Skip to main content

Advertisement

Log in

A novel, alternative pathway of apoptosis triggered through class II major histocompatibility complex molecules

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Major histocompatibility complex class II (MHC-II) molecules, in addition to their role of presenting antigen to T lymphocytes, can serve as receptors triggering programmed cell death. MHC-II induced cell death affects activated/tumour transformed cells selectively, and it proceeds without the involvement of caspases, the major proteases of classical apoptosis. Caspase-independent programmed cell death can also be triggered, albeit less effectively, via a series of other cell surface molecules. Here, we discuss the major characteristics, physiological significance, and clinical relevance of caspase-independent apoptotic pathways with particular emphasis on the one induced by MHC-II ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

AIF :

Apoptosis-inducing factor

mab :

Monoclonal antibody

MHC :

Major histocompatibility complex

PKC :

Protein kinase C

References

  1. Raff M (1998) Cell suicide for beginners. Nature 396:119–122

    Google Scholar 

  2. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  Google Scholar 

  3. Trauth BC, Klas C, Peters AMJ, Matzku S, Möller P, Falk W, Dabatin K-M, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    Google Scholar 

  4. Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853

    CAS  PubMed  Google Scholar 

  5. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  6. Déas O, Dumont C, MacFarlane M, Rouleau M, Hebib C, Harper F, Hirsch F, Charpentier B, Cohen GM, Senik A (1998) Caspase-independent cell death induced by anti-CD2 or staurosporine in activate human peripheral T lymphocytes. J Immunol 161:3375–3383

    CAS  PubMed  Google Scholar 

  7. Lesage S, Steff AM, Philippoussis F, Page M, Trop S, Mateo V, Hugo P (1997) CD4+CD8+ thymocytes are preferentially induced to die following CD45 cross-linking, through a novel apoptotic pathway. J Immunol 159:4762–4771

    CAS  PubMed  Google Scholar 

  8. Pettersen RD, Hestdal K, Olafsen MK, Lie SO, Lindberg FP (1999) CD47 signals T cell death. J Immunol 162:7031–7040

    CAS  PubMed  Google Scholar 

  9. Pettersen RD, Bernard G, Olafsen, MK, Pourtein M, Lie SO (2001) CD99 signals caspase-independent T cell death. J Immunol 166:4931–4942

    CAS  PubMed  Google Scholar 

  10. Skov S, Klausen P, Claesson MH (1997) Ligation of major histocompatibility complex (MHC) class I molecules on human T cells induces cell death through PI-3 kinase-induced–Jun NH2-terminal kinase activity: a novel apoptotic pathway distinct from Fas-induced apoptosis. J Cell Biol 139:1523–1531

    Article  CAS  PubMed  Google Scholar 

  11. Drénou B, Blancheteau V, Burgess DH, Fauchet R, Charron DJ, Mooney NA (1999) A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J Immunol 163:4115–4124

    PubMed  Google Scholar 

  12. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S (1998) Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143:1353–1360

    Article  CAS  PubMed  Google Scholar 

  13. Petit F, Arnoult D, Lelievre JD, Muotouh-de Parseval L, Hance AJ, Schneider P, Corbeil J, Ameisen JC, Estaquier J (2002) Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J Biol Chem 277:1477–1487

    Article  CAS  PubMed  Google Scholar 

  14. Nagy ZA, Hubner B, Löhning C, Rauchenberger R, Reiffert S, Thomassen-Wolf E, Zahn S, Leyer S, Schier EM, Zahradnik A, Brunner C, Lobenwein K, Rattel B, Stanglmaier M, Hallek M, Wing M, Anderson S, Dunn M, Kretzschmar T, Tesar M (2002) Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat Med 8:801–807

    CAS  PubMed  Google Scholar 

  15. Cresswell P (1994) Assembly, transport and function of MHC class II molecules. Annu Rev Immunol 12:259–293

    CAS  PubMed  Google Scholar 

  16. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    CAS  PubMed  Google Scholar 

  17. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221

    Google Scholar 

  18. Dessen A, Lawrence CM, Cupo S, Zaller DM, Wiley DC (1997) X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7:473–481

    CAS  PubMed  Google Scholar 

  19. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188:1511–1520

    CAS  PubMed  Google Scholar 

  20. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ, Vignali DAA, Strominger JL (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768

    CAS  PubMed  Google Scholar 

  21. Hammer J, Valsasini P, Tolba K, Bolin D, Higelin J, Takacs B, Sinigaglia F (1993) Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74:197–203

    CAS  PubMed  Google Scholar 

  22. Guardiola J, Maffei A (1993) Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Critical Rev Immunol 13:247–268

    CAS  Google Scholar 

  23. Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2:395–428

    Article  CAS  PubMed  Google Scholar 

  24. Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasini P, Nagy ZA, Sinigaglia F (1995) Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid Arthritis association. J Exp Med 181:1847–1855

    CAS  PubMed  Google Scholar 

  25. Wucherpfennig KW, Yu B, Bhol K, Monos DS, Argyris E, Karr RW, Ahmed AR, Strominger JL (1995) Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA 92:11935–11939

    CAS  PubMed  Google Scholar 

  26. Palacios R, Martinez-Maza O, Guy K (1983) Monoclonal antibodies against HLA-DR antigens replace T helper cells in activation of B lymphocytes. Proc Natl Acad Sci USA 80:3456–3460

    CAS  PubMed  Google Scholar 

  27. Clement LT, Tedder TF, Gartland GL (1986) Antibodies reactive with class II antigens encoded for by the major histocompatibility complex inhibit human B cell activation. J Immunol 136:2375–2381

    CAS  PubMed  Google Scholar 

  28. Howard DR, Eaves AC, Takei F (1986) Monoclonal antibodies to HLA-DP, DQ, and DR determinants: functional effects on the activation and proliferation of normal and EBV-transformed B cells. Exp Hematol 14:887–895

    CAS  PubMed  Google Scholar 

  29. Holte H, Blomhoff HK, Beiske K, Funderud S, Torjesen P, Gaudernack G, Stokke T, Smeland EB (1989) Intracellular events associated with inhibition of B cell activation by monoclonal antibodies to HLA class II antigens. Eur J Immunol 19:1221–1225

    CAS  PubMed  Google Scholar 

  30. Vaickus L, Jones VE, Morton CL, Whitford K, Bacon RN (1989) Antiproliferative mechanism of anti-class II monoclonal antibodies. Cell Immunol 119:445–458

    CAS  PubMed  Google Scholar 

  31. Palacios R (1985) Monoclonal antibodies against human Ia antigens stimulate monocytes to secrete interleukin 1. Proc Natl Acad Sci USA 82:6652–6656

    CAS  PubMed  Google Scholar 

  32. Matsuyama S, Koide Y, Yoshida TO (1993) HLA class II molecule-mediated signal transduction mechanism responsible for the expression of interleukin-1 β and tumor necrosis factor-α genes induced by staphylococcal superantigen. Eur J Immunol 23:3194–3202

    CAS  PubMed  Google Scholar 

  33. Altomonte M, Pucillo C, Damante G, Maio M (1993) Cross-linking of HLA class II antigens modulates the release of tumor necrosis factor-α by the EBV-B lymphoblastoid cell line JY. J Immunol 151:5115–5122

    CAS  PubMed  Google Scholar 

  34. Kabelitz D, Janssen O (1989) Growth inhibition of Epstein-Barr virus-transformed B cells by anti-HLA-DR antibody L243: possible relationship to L243-induced down-regulation of CD23 antigen expression. Cell Immunol 120:21–30

    CAS  PubMed  Google Scholar 

  35. Mourad W, Geha RS, Chatila T (1990) Engagement of major histocompatibility complex class II molecules induces sustained, lymphocyte function-associated molecule 1-dependent cell adhesion. J Exp Med 172:1513–1516

    CAS  PubMed  Google Scholar 

  36. Kansas GS, Cambier JC, Tedder TF (1992) CD4 binding to major histocompatibility complex class II antigens induces LFA-1-dependent and -independent homotypic adhesion of B lymphocytes. Eur J Immunol 22:147–152

    CAS  PubMed  Google Scholar 

  37. Nabavi N, Freeman GJ, Gault A, Godfrey D, Nadler LM, Glimcher LH (1992) Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature 360:266–268

    Article  CAS  PubMed  Google Scholar 

  38. Howard DR, Eaves AC, Takei F (1986) Monoclonal antibodies to HLA-DP, DQ, and DR determinants: functional effects on the activation and proliferation of normal and EBV-transformed B cells. Exp Hematol 14:887–895

    CAS  PubMed  Google Scholar 

  39. Bridges SH, Kruisbeek AM, Longo DL (1987) Selective in vitro antitumor effects of monoclonal anti-I-A antibody on B cell lymphoma. J Immunol 139:4242–4249

    CAS  PubMed  Google Scholar 

  40. Newell MK, VanderWall J, Beard KS, Freed JH (1993) Ligation of major histocompatibility complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc Natl Acad Sci USA 90:10459–10463

    CAS  PubMed  Google Scholar 

  41. Truman J-P, Ericson ML, Choqueux-Seebold CJM, Charron DJ, Mooney NA (1994) Lymphocyte programmed cell death is mediated via HLA class II DR. Int Immunol 6:887–896

    CAS  PubMed  Google Scholar 

  42. Yoshino T, Cao L, Nishiuchi R, Matsuo Y, Yamadori I, Kondo E, Teramoto N, Hayashi K, Takahashi K, Kamikawaji N, Akagi T (1995) Ligation of HLA class II molecules promotes sensitivity to CD95 (Fas antigen, APO-1)-mediated apoptosis. Eur J Immunol 25:2190–2194

    CAS  PubMed  Google Scholar 

  43. Truman J-P, Choqueux C, Tschopp J, Vedrenne J, Le Deist F, Charron D, Mooney N (1997) HLA class II-mediated death is induced via Fas/Fas ligand interactions in human splenic B lymphocytes. Blood 89:1996–2007

    CAS  PubMed  Google Scholar 

  44. Vidović D, Falcioni F, Siklodi B, Belunis CJ, Bolin DR, Ito K, Nagy ZA (1995) Down-regulation of class II major histocompatibility complex molecules on antigen presenting cells by antibody fragments. Eur J Immunol 25:3349–3355

    PubMed  Google Scholar 

  45. Vidovic’ D, Toral J (1998) Selective apoptosis of neoplastic cells by the HLA-DR-specific monoclonal antibody. Cancer Lett 128:127–135

    Article  CAS  PubMed  Google Scholar 

  46. Bertho N, Drénou B, Laupeze B, Le Berre C, Amiot L, Grosset J-M, Fardel O, Charron D, Mooney N, Fauchet R (2000) HLA-DR-mediated apoptosis susceptibility discriminates differentiation stages of dendritic/monocytic APC. J Immunol 164:2379–2385

    CAS  PubMed  Google Scholar 

  47. Bertho N, Blancheteau M, Setterblad N, Laupeze B, Lord JM, Drenou B, Amiot L, Charron DJ, Fauchet R, Mooney N (2002) MHC class II-mediated apoptosis of mature dendritic cells proceeds by activation of the protein kinase C-delta isoenzyme. Int Immunol 14:935–942

    Article  CAS  PubMed  Google Scholar 

  48. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages J Immunol 148:2207–2216

    CAS  Google Scholar 

  49. McLellan A, Heldmann M, Terbeck G, Weih F, Linden C, Brocker EB, Leverku M, Kampgen E (2000) MHC class II and CD40 play opposing roles in dendritic cell survival. Eur J Immunol 30:2612–2619

    Article  CAS  PubMed  Google Scholar 

  50. Marzo I, Brenner C, Zamzami N, Santos SA, Beutner G, Brdiczka D, Rémy R, Xie Z-H, Reed JC, Kroemer G (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187:1261–1271

    Article  CAS  PubMed  Google Scholar 

  51. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  Google Scholar 

  52. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic Dnase when released from mitochondria. Nature 412:95–99

    CAS  PubMed  Google Scholar 

  53. Arnoult D, Parone P, Martinou JC, Antonsson B, Astaquier J, Ameisen JC (2002) Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159:923–929

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    CAS  PubMed  Google Scholar 

  55. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/Htr2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    Article  CAS  PubMed  Google Scholar 

  56. Huby RD, Dearman RJ, Kimber I (1999) Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem 274:22591–22596

    Article  CAS  PubMed  Google Scholar 

  57. Setterblad N, Becart S, Charron D, Mooney N (2001) Signalling via MHC class II molecules modifies the composition of GEMs in APC. Scand J Immunol 54:87–92

    Article  CAS  PubMed  Google Scholar 

  58. Becart S, Setterblad N. Ostrand-Rosenber S, Ono SJ, Charron D, Mooney N (2003) Intracytoplasmic domains of MHC class II molecules are essential for lipid-raft-dependent signaling. J Cell Sci (in press)

  59. Setterblad N, Roucard C, Bocaccio C, Abastado J-P, Charron D, Mooney N (2003) Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol (in press)

  60. Scheel-Toellner D, Pilling D, Akbar AN, Hardie D, Lombardi G, Salmon M, Lord JM (1999) Inhibition of T cell apoptosis by IFN-beta rapidly reverses nuclear translocation of protein kinase C-delta. Eur J Immunol 29:2603–2612

    Article  CAS  PubMed  Google Scholar 

  61. Pongracz J, Webb P, Wang K, Deacon E, Lunn OJ, Lord JM (1999) Spontaneous neutrophil apoptosis involves caspase 3-mediated activation of protein kinase C-delta. J Biol Chem 274:37329–37334

    Article  CAS  PubMed  Google Scholar 

  62. Cambier JC, Newell MK, Justement LB, McGuire JC, Leach KL, Chen ZZ (1987) Ia binding ligands and cAMP stimulate nuclear translocation of PKC in B lymphocytes. Nature 327:629–632

    Article  CAS  PubMed  Google Scholar 

  63. Joza N, Susin SA, Dauglas E, Stanford WL, Cho SK, Li CYJ, Elia AJ, Cheng H-YM, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong Y-Y, Mak TW, Zuniga-Pflücker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Google Scholar 

  64. Vidovic’ D, Falcioni F, Bolin DR, Nagy ZA (1995) Down-regulation of class II major histocompatibility complex molecules on antigen presenting cells after interaction with helper T cells. Eur J Immunol 25:1326–1331

    CAS  PubMed  Google Scholar 

  65. Vose JM, Link BK, Grossbard ML, Czuczman M, Grillo-Lopez A, Gilman P, Lowe A, Kunkel LA, Fisher RI (2001) Phase II study of Rituximab in combination with CHOP chemotherapy in patients with previously untreated aggressive non-Hodgkin lymphoma. J Clin Oncol 19:389–397

    CAS  PubMed  Google Scholar 

  66. Dyer MJS, Hale G, Hayhoe FGJ, Waldmann H (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73:1431–1439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Stéphane Bécart for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan A. Nagy.

Additional information

Zoltan A. Nagy

received his D.V.M. degree from the University of Budapest, and his Ph.D. in immunology from the Hungarian Academy of Sciences, Budapest, Hungary. He is presently Vice President of GPC-Biotech AG, Munich, Germany. His research interests include T cell immunology, autoimmunity, and the biotherapy of cancer.

Nuala A. Mooney

received her Ph.D. in pathology from the University of London, UK. She is currently a Principal Investigator (Directeur de Recherche) in INSERM Unite 396 Immunogénétique Humaine, Paris, France. Her research interests include signal transduction via MHC molecules and microdomain organization of MHC molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, Z.A., Mooney, N.A. A novel, alternative pathway of apoptosis triggered through class II major histocompatibility complex molecules. J Mol Med 81, 757–765 (2003). https://doi.org/10.1007/s00109-003-0489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0489-9

Keywords

Navigation