Skip to main content

Advertisement

Log in

BRCA1 and p53: compensatory roles in DNA repair

  • Invited Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The BRCA1 breast cancer susceptibility gene has been implicated in many cellular processes, yet its specific mechanism of tumor suppression remains unclear. BRCA1 plays a role in several DNA repair pathways including nucleotide excision repair (NER). Loss of the p53 tumor suppressor gene, a key regulator of NER, is an important and necessary event in the pathogenesis of BRCA1-mutated tumors. Here we discuss the role of BRCA1 and NER in breast cancer and the interactions of BRCA1 with p53 in breast tumorigenesis and suggest approaches for risk assessment and chemotherapeutic management of BRCA1-related breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

BPDE :

Benzo[a]pyrene-7,8-diol-9,10-epoxide

ER :

Estrogen receptor

FA :

Fanconi anemia

GGR :

Global genomic repair

IR :

Ionizing radiation

NER :

Nucleotide excision repair

TCR :

Transcription-coupled repair

UV :

Ultraviolet

XP :

Xeroderma pigmentosum

References

  1. Ford D, et al (1994) Risks of cancer in BRCA1 mutation carriers. Lancet 343:692–695

    CAS  PubMed  Google Scholar 

  2. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1 mutation carriers. Am J Hum Genet 56:65–71

    Google Scholar 

  3. Chappuis PO, et al (2000) Germline BRCA1/2 mutations and p27 (Kip1) protein levels independently predict outcome after breast cancer. J Clin Oncol 18:4045–4052

    CAS  Google Scholar 

  4. Stoppa-Lyonnet D, et al (2000) Familial invasive breast cancers: worse outcome related to BRCA1 mutations. J Clin Oncol 18:4053–4059

    CAS  Google Scholar 

  5. Hedenfalk I, et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548

    CAS  PubMed  Google Scholar 

  6. Lakhani SR, et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318

    CAS  Google Scholar 

  7. Miyamoto K, et al (2002) Promoter hypermethylation and post-transcriptional mechanisms for reduced BRCA1 immunoreactivity in sporadic human breast cancers. Jpn J Clin Oncol 32:79–84

    Article  PubMed  Google Scholar 

  8. Esteller M, et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–584

    CAS  PubMed  Google Scholar 

  9. Bianco T, et al (2000) Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis 21:147–184

    CAS  Google Scholar 

  10. Rice JC, et al (2000) Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21:1761–1784

    CAS  Google Scholar 

  11. Schuyer M, Berns EM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155:143–152

  12. Crook T, et al (1998) p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17:1681–1689

    CAS  Google Scholar 

  13. Hakem R, et al (1997) Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat Genet 16:298–302

    CAS  Google Scholar 

  14. Hakem R, et al (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023

    CAS  PubMed  Google Scholar 

  15. MacLachlan TK, et al (2000) BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 275:2777–2785

    CAS  PubMed  Google Scholar 

  16. Arizti P, et al (2000) Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 20:7450–7459

    CAS  Google Scholar 

  17. Brodie S, et al (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20:7514–7523

    CAS  Google Scholar 

  18. Deng C, Brodie S (2001) Knockout mouse models and mammary tumorigenesis. Semin Cancer Biol 11:387–394

    CAS  Google Scholar 

  19. Ford JM, Hanawalt PC (1995) Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci U S A 92:8876–8880

    CAS  Google Scholar 

  20. Ford JM, Hanawalt PC (1997) Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272:28073–28080

    CAS  Google Scholar 

  21. Lloyd DR, Hanawalt PC (2000) p53-dependent global genomic repair of benzo[a]pyrene-7:8-diol-9:10-epoxide adducts in human cells. Cancer Res 60:517–521

    CAS  Google Scholar 

  22. Ford J, Hanawalt P (1997) Role of DNA excision repair gene defects in the etiology of cancer. Curr Top Microbiol Immunol 221:47–70

    CAS  Google Scholar 

  23. Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272:23465–23468

    Article  CAS  PubMed  Google Scholar 

  24. Wood RD (1999) DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81:39–44

  25. Greenblatt MS, et al (2001) TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res 61:4092–4097

    CAS  Google Scholar 

  26. Motykiewicz G, et al (2001) Immunoperoxidase detection of polycyclic aromatic hydrocarbon-DNA adducts in breast tissue sections. Cancer Detect Prev 25:328–335

    CAS  Google Scholar 

  27. Xiong P, et al (2001) Sensitivity to benzo(a)pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms: a case-control study. Cancer Res 61:8465–8469

    CAS  Google Scholar 

  28. Kumar R, et al (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103:671–675

    CAS  Google Scholar 

  29. Tang D, et al (2002) Polymorphisms in the DNA repair enzyme XPD are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. Breast Cancer Res Treat 75:159–166

    CAS  Google Scholar 

  30. Takebayashi Y, et al (2001) Loss of heterozygosity of nucleotide excision repair factors in sporadic ovarian, colon and lung carcinomas: implication for their roles of carcinogenesis in human solid tumors. Cancer Lett 174:115–125

    CAS  Google Scholar 

  31. Miyashita H, et al (2001) Loss of heterozygosity of nucleotide excision repair factors in sporadic oral squamous cell carcinoma using microdissected tissue. Oncol Rep 8:1133–1138

    CAS  Google Scholar 

  32. Adimoolam S, Ford JM (2003) p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (in press)

  33. Kastan M, et al (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  34. Ford JM, Baron EL, Hanawalt PC (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res 58:599–603

    CAS  Google Scholar 

  35. Hwang BJ, et al (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 96:424–428

    CAS  Google Scholar 

  36. Smith ML, et al (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    CAS  Google Scholar 

  37. Adimoolam S, Lin CX, Ford JM (2001) The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1) is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J Biol Chem 276:25813–25822

    CAS  Google Scholar 

  38. Fitch ME, Cross IV, Ford JM (2003) p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation induced DNA damage, in vivo. Carcinogenesis 24:843–850

  39. Adimoolam S, Ford JM (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 99:12985–12990

    CAS  Google Scholar 

  40. Wang X, et al (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10:188–195

    CAS  Google Scholar 

  41. Wang X, et al (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10:1219–1232

    CAS  Google Scholar 

  42. Hartman A, Ford J (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32:180–184

    CAS  Google Scholar 

  43. Harkin D, et al (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586

    CAS  PubMed  Google Scholar 

  44. Zheng L, et al (2000) Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell 6:757–768

    CAS  Google Scholar 

  45. Li S, et al (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215

  46. Jin S, et al (2000) BRCA1 activation of the GADD45 promoter. Oncogene 19:4050–4057

    CAS  Google Scholar 

  47. Takimoto R, et al (2002) BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol Ther 1:177–186

    CAS  Google Scholar 

  48. Abbott DW, et al (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274:18808–18812

    CAS  PubMed  Google Scholar 

  49. Pierce LJ, et al (2000) Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18:3360–3369

    CAS  Google Scholar 

  50. Gowen LC, et al (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281:1009–1012

  51. Gowen LC, et al (2003) Retraction. Science 300:1657

    CAS  Google Scholar 

  52. Le Page F, et al (2000) BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res 60:5548–5552

    PubMed  Google Scholar 

  53. Harkin DP, et al (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586

    CAS  PubMed  Google Scholar 

  54. Hashizume R, et al (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540

    CAS  Google Scholar 

  55. Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G (2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21:3445–3450

    CAS  Google Scholar 

  56. Ruffner H, et al (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A 98:5134–5139

    CAS  Google Scholar 

  57. Cortez D, et al (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

  58. Wang Y, et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    CAS  Google Scholar 

  59. Bhattacharyya A, et al (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903

    CAS  Google Scholar 

  60. Lee J, et al (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204

  61. Zhong Q, et al (1999) Association of BRCA1 with the hRad50-hMre11–p95 complex and the DNA damage response. Science 285:747–750

  62. Grompe M, D'Andrea A (2001) Fanconi anemia and DNA repair. Hum Mol Genet 10:2253–2259

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Higuera I, et al (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7:249–262

    CAS  PubMed  Google Scholar 

  64. Zhen W, et al (1993) Deficient gene specific repair of cisplatin-induced lesions in xeroderma pigmentosum and Fanconi's anemia cell lines. Carcinogenesis 14:919–924

    CAS  Google Scholar 

  65. Moynahan M, et al (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518

    CAS  PubMed  Google Scholar 

  66. Moynahan ME, Cui TY, Jasin M (2001) Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61:4842–4850

    CAS  Google Scholar 

  67. Scully R, et al (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4:1093–1099

    CAS  Google Scholar 

  68. Cantor S, et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160

    CAS  Google Scholar 

  69. Wang H, et al (2001) Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 61:270–277

    CAS  Google Scholar 

  70. Zhong Q, et al (2002) Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 62:3966–3970

    CAS  Google Scholar 

  71. Wang H, et al (2001) Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 61:270–277

    CAS  Google Scholar 

  72. Merel P, et al (2002) Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 21:5654–5659

    CAS  Google Scholar 

  73. Snouwaert J, et al (1999) BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 18:7900–7907

    CAS  Google Scholar 

  74. Yu X, et al (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273:25388–25392

    CAS  Google Scholar 

  75. Yu X, Baer R (2000) Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J Biol Chem 275:18541–18549

    CAS  PubMed  Google Scholar 

  76. Li S, et al (1999) Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274:11334–11338

    CAS  Google Scholar 

  77. Zheng L, et al (2001) BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci USA 98:9587–9592

    CAS  Google Scholar 

  78. Ganesan S, et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    CAS  Google Scholar 

  79. Aunoble B, Bernard-Gallon D, Bignon YJ (2001) Regulation of BRCA1 and BRCA2 transcript in response to cisplatin, adriamycin, taxol and ionising radiation is correlated to p53 functional status in ovarian cancer cell lines. Oncol Rep 8:663–668

    CAS  Google Scholar 

  80. Husain A, et al (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum (II). Cancer Res 58:1120–1123

    CAS  Google Scholar 

  81. Moynahan ME, Cui TY, Jasin M (2001) Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61:4842–4850

    CAS  Google Scholar 

Download references

Acknowledgements

A.R.H. was supported by an ASCO Young Investigator Award and a Postdoctoral Fellowship from the California Breast Cancer Research Program. J.M.F. was supported by the National Institutes of Health Award RO1 CA83889, a California Breast Cancer Research Program Pilot Award, a California Cancer Research Program Research Award, a V Foundation Award in Translational Science, and a Burroughs Wellcome Fund New Investigator Award in Toxicological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Ford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, AR., Ford, J.M. BRCA1 and p53: compensatory roles in DNA repair. J Mol Med 81, 700–707 (2003). https://doi.org/10.1007/s00109-003-0477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0477-0

Keywords

Navigation