Skip to main content
Log in

Androgen receptor independent cardiovascular action of the antiandrogen flutamide

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We have previously shown that flutamide (specific antagonist of the androgen receptor) has antihypertensive effects. In the present study we examined the mechanisms of flutamide action in the vasculature. The vascular effects of flutamide were assayed in aortae isolated from male or female Sprague-Dawley rats and from rats or mice lacking a functional androgen receptor (tfm, testicular feminization mutation). The effect of flutamide on coronary flow was tested in isolated hearts. In addition, male hypertensive rats with tfm mutation were treated with flutamide, and blood pressure was monitored. Flutamide induced a relaxation of rat aortae from all the strains used (maximum relaxation at 10 µM: 51.3±5.2% of phenylephrine contraction) and increased the coronary flow. The aortic relaxation to flutamide was abolished by endothelium removal, or by inhibition of nitric oxide synthase, guanylyl cyclase, and tyrosine kinase but not by calmodulin inhibition. Flutamide treatment attenuated the development of hypertension in mouse renin transgenic rats with the tfm mutation. Flutamide produces direct vasodilation by inducing release of NO from the endothelium and causes subsequent activation of soluble guanylyl cyclase in an active androgen receptor independent manner. This response may contribute to the observed antihypertensive actions of flutamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

L-NAME :

N G-Nitro-l-arginine methylester

MAPK :

Mitogen activated protein kinase

NOS :

Nitric oxide synthase

SD :

Sprague-Dawley

tfm :

Testicular feminization mutation

References

  1. Hayward CS, Webb CM, Collins P (2001) Effect of sex hormones on cardiac mass. Lancet 357:1354–1356

    Article  CAS  PubMed  Google Scholar 

  2. Reckelhoff JF, Granger JP (1999) Role of androgens in mediating hypertension and renal injury. Clin Exp Pharmacol Physiol 26:127–131

    Article  CAS  PubMed  Google Scholar 

  3. Reckelhoff JF (2001) Gender differences in the regulation of blood pressure. Hypertension 37:1199–1208

    CAS  PubMed  Google Scholar 

  4. Baltatu O, Cayla C, Iliescu R, Andreev D, Bader M (2003) Abolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats. Hypertension 41:830–833

    Article  CAS  PubMed  Google Scholar 

  5. Baltatu O, Cayla C, Iliescu R, Andreev D, Jordan C, Bader M (2002) Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene. J Am Soc Nephrol 13:2681–2687

    CAS  PubMed  Google Scholar 

  6. Jones RD, English KM, Pugh PJ, Morice AH, Jones TH, Channer KS (2002) Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharmacol 39:814–823

    Article  CAS  PubMed  Google Scholar 

  7. Caplea A, Seachrist D, Dunphy G, Ely D (2001) Sodium-induced rise in blood pressure is suppressed by androgen receptor blockade. Am J Physiol Heart Circ Physiol 280:H1793–H1801

    CAS  PubMed  Google Scholar 

  8. Reckelhoff JF, Zhang H, Srivastava K, Granger JP (1999) Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 34:920–923

    CAS  PubMed  Google Scholar 

  9. Kumai T, Tanaka M, Tateishi T, Watanabe M, Nakura H, Asoh M, Kobayashi S (1998) Effects of anti-androgen treatment on the catecholamine synthetic pathway in the adrenal medulla of spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 357:620–624

    CAS  PubMed  Google Scholar 

  10. Ganten U, Schroder G, Witt M, Zimmermann F, Ganten D, Stock G (1989) Sexual dimorphism of blood pressure in spontaneously hypertensive rats: effects of anti-androgen treatment. J Hypertens 7:721–726

    CAS  PubMed  Google Scholar 

  11. Langendorff O (1895) Untersuschungen am überlebenden Säugertierherzen. Pflugers Arch 61:291–307

    Google Scholar 

  12. Stromer H, Cittadini A, Szymanska G, Apstein CS, Morgan JP (1997) Validation of different methods to compare isovolumic cardiac function in isolated hearts of varying sizes. Am J Physiol 272:H501–H510

    CAS  PubMed  Google Scholar 

  13. Baltatu O, Janssen BJ, Bricca G, Plehm R, Monti J, Ganten D, Bader M (2001) Alterations in blood pressure and heart rate variability in transgenic rats with low brain angiotensinogen. Hypertension 37:408–413

    CAS  PubMed  Google Scholar 

  14. Bohlender J, Menard J, Edling O, Ganten D, Luft FC (1998) Mouse and rat plasma renin concentration and gene expression in (mRen2)27 transgenic rats. Am J Physiol 274:H1450–H1456

    CAS  PubMed  Google Scholar 

  15. Brogden RN, Chrisp P (1991) Flutamide. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in advanced prostatic cancer. Drugs Aging 1:104–115

    CAS  PubMed  Google Scholar 

  16. De L, V, Lanzetta D, D'Antona D, La Marca A, Morgante G (1998) Hormonal effects of flutamide in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 83:99–102

    PubMed  Google Scholar 

  17. Wild RA, Grubb B, Hartz A, Van Nort JJ, Bachman W, Bartholomew M (1990) Clinical signs of androgen excess as risk factors for coronary artery disease. Fertil Steril 54:255–259

    CAS  PubMed  Google Scholar 

  18. Reckelhoff JF, Zhang H, Srivastava K (2000) Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension 35:480–483

    CAS  PubMed  Google Scholar 

  19. Chen YF, Naftilan AJ, Oparil S (1992) Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension 19:456–463

    CAS  PubMed  Google Scholar 

  20. Gregg DE (1963) Effect of coronary perfusion pressure and coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    CAS  Google Scholar 

  21. Karunanithi MK, Young JA, Kalnins W, Kesteven S, Feneley MP (1999) Response of the intact canine left ventricle to increased afterload and increased coronary perfusion pressure in the presence of coronary flow autoregulation. Circulation 100:1562–1568

    CAS  PubMed  Google Scholar 

  22. Maggiolini M, Donze O, Jeannin E, Ando S, Picard D (1999) Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor alpha. Cancer Res 59:4864–4869

    CAS  PubMed  Google Scholar 

  23. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P (1995) Testosterone relaxes rabbit coronary arteries and aorta. Circulation 91:1154–1160

    CAS  PubMed  Google Scholar 

  24. Costarella CE, Stallone JN, Rutecki GW, Whittier FC (1996) Testosterone causes direct relaxation of rat thoracic aorta. J Pharmacol Exp Ther 277:34–39

    CAS  PubMed  Google Scholar 

  25. Ding AQ, Stallone JN (2001) Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. J Appl Physiol 91:2742–2750

    CAS  PubMed  Google Scholar 

  26. Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ (2001) Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 281:H1720–H1727

    CAS  PubMed  Google Scholar 

  27. Tep-areenan P, Kendall DA, Randall MD (2002) Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol 135:735–740

    CAS  PubMed  Google Scholar 

  28. Muller MJ, Baer HP (1983) Relaxant effects of forskolin in smooth muscle. Role of cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol 322:78–82

    CAS  PubMed  Google Scholar 

  29. Brandes RP, Schmitz-Winnenthal FH, Feletou M, Godecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R (2000) An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci USA 97:9747–9752

    Article  CAS  Google Scholar 

  30. Fleming I, Bauersachs J, Busse R (1997) Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 34:165–174

    CAS  PubMed  Google Scholar 

  31. Fleming I, Busse R (1999) Signal transduction of eNOS activation. Cardiovasc Res 43:532–541

    Article  CAS  PubMed  Google Scholar 

  32. Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18:6322–6329

    CAS  PubMed  Google Scholar 

  33. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401–406

    CAS  PubMed  Google Scholar 

  34. Ba ZF, Wang P, Kuebler JF, Rue LW III, Bland KI, Chaudry IH (2002) Flutamide induces relaxation in large and small blood vessels. Arch Surg 137:1180–1186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the German Bundesministerium für Bildung und Forschung (grant 0310681B). We thank Irene Strauss and Gabriele Born for the measurement of plasma hormone levels and Lieselotte Winkler for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Baltatu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iliescu, R., Campos, L.A., Schlegel, WP. et al. Androgen receptor independent cardiovascular action of the antiandrogen flutamide. J Mol Med 81, 420–427 (2003). https://doi.org/10.1007/s00109-003-0449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0449-4

Keywords

Navigation