Skip to main content

Advertisement

Log in

Membrane transplantation to correct integral membrane protein defects

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In this report we show that the tendency of certain viruses to carry host membrane proteins in their envelopes can be harnessed for transplantation of small patches of plasma membrane, including fully functional, polytopic ion channel proteins and their regulatory binding partners. As a stringent model we tested the topologically complex epithelial ion channel CFTR. Initially an attenuated vaccinia virus was found capable of transferring CFTR in a properly folded, functional and regulatable form to CFTR negative cells. Next we generated viruslike particles (VLPs) composed of retroviral structural proteins that assemble and bud at the host cell plasma membrane. These particles were also shown to mediate functional ion channel transfer. By testing the capacity of complex membrane proteins to incorporate into viral envelopes these experiments provide new insight into the permissiveness of viral envelopment, including the ability of incorporated proteins to retain function and repair defects at the cell surface, and serve as a platform for studies of ion channel and membrane protein biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

CFTR :

Cystic fibrosis transmembrane conductance regulator

EMV :

Extracellular mature virus

ER :

Endoplasmic reticulum

IMV :

Intracellular mature virus

MOI :

Multiplicity of infection

PKA :

Protein kinase A

RSV :

Rous sarcoma virus

VLP :

Viruslike particle

References

  1. Le Gall S, Prevost MC, Heard JM, Schwartz O (1997) Human immuno-deficiency virus type I Nef independently affects virion incorporation of major histocompatibility complex class I molecules and virus infectivity. Virology 229:295–301

    Article  PubMed  Google Scholar 

  2. Saarloos MN, Sullivan BL, Czerniewski MA, Parameswar KD, Spear GT (1997) Detection of HLA-DR associated with monocytotropic, primary, and plasma isolates of human immunodeficiency virus type 1. J Virol 71:1640–1643

    CAS  PubMed  Google Scholar 

  3. Spear GT, et al (1995) Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J Immunol 155:4376–4381

    CAS  PubMed  Google Scholar 

  4. Dolter KE, King SR, Holland TC (1993) Incorporation of CD4 into virions by a recombinant herpes simplex virus. J Virol 67:189–195

    CAS  PubMed  Google Scholar 

  5. Balliet JW, Bates P (1998) Efficient infection mediated by viral receptors incorporated into retroviral particles. J Virol 72:671–676

    CAS  PubMed  Google Scholar 

  6. Bastiani L, Laal S, Kim M, Zolla-Pazner S (1997) Host cell-dependent alterations in envelope components of human immunodeficiency virus type 1 virions. J Virol 71:3444–3450

    CAS  PubMed  Google Scholar 

  7. Saphire AC, Bobardt MD, Gallay PA (1999) Host cyclophilin A mediates HIV-1 attachment to target cells via heparans. EMBO J 18:6771–6785

    Article  CAS  PubMed  Google Scholar 

  8. Saifuddin M, et al (1995) Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J Exp Med 82:501–509

    Google Scholar 

  9. Saifuddin M, et al (1997) Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. J Gen Virol 78:1907–1911

    CAS  PubMed  Google Scholar 

  10. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79:S23–S45

    CAS  PubMed  Google Scholar 

  11. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007–1017

    CAS  PubMed  Google Scholar 

  12. Joklik WK (1962) The purification of four strains of poxvirus. Virology 18:9–18

    CAS  Google Scholar 

  13. Smith GLV A (1998) Coronaviruses and arteriviruses. Plenum, New York

  14. Bebok Z, Mazzochi C, King SA, Hong JS, Sorscher EJ (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873–29878

    Article  CAS  PubMed  Google Scholar 

  15. Dong J, Roth MG, Hunter E (1992) A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J Virol 66:7374–7382

    CAS  PubMed  Google Scholar 

  16. Lee E, Yeo A, Kraemer B, Wickens M, Linial ML (1999) The gag domains required for avian retroviral RNA encapsidation determined by using two independent assays. J Virol 73:6282–6292

    CAS  PubMed  Google Scholar 

  17. Clancy JP, Ruiz FE, Sorscher EJ (1999) Adenosine and its nucleotides activate wild-type and R117H CFTR through an A2B receptor-coupled pathway. Am J Physiol 276:C361–369

    CAS  PubMed  Google Scholar 

  18. King SA, Sorscher EJ R-domain interactions with distal regions of CFTR lead to phosphorylation and activation. Biochemistry 39:9868–9875

    Google Scholar 

  19. Ismailov II, Shlyonsky VG, Alvarez O, Benos DJ (1997) Cation permeability of a cloned rat epithelial amiloride-sensitive Na+ channel. J Physiol (Lond) 504:287–300

    Google Scholar 

  20. Sodeik B, et al (1993) Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol 121:521–541

    CAS  PubMed  Google Scholar 

  21. Gilbert A, Jadot M, Leontieva E, Wattiaux-De Coninck S, Wattiaux R (1998) Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res 242:144–152

    Article  CAS  PubMed  Google Scholar 

  22. Ostedgaard LS, et al (1997) Association of domains within the cystic fibrosis transmembrane conductance regulator. Biochemistry 36:1287–1294

    Article  CAS  PubMed  Google Scholar 

  23. Rich DP, et al (1990) Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347:358–363

    Article  CAS  PubMed  Google Scholar 

  24. Naren AP, Cobb B, Li C, Roy K, Nelson D, Heda GD, Liao J, Kirk KL, Sorscher EJ, Hanrahan J, Clancy JP (2003) A macromolecular complex of β2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci USA 100:342–346

    Article  CAS  PubMed  Google Scholar 

  25. Dong J, Roth MG, Hunter E (1992) A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J Virol 66:7374–7382

    CAS  PubMed  Google Scholar 

  26. Vogt VM, Eisenman R (1973) Identification of a large polypeptide precursor of avian oncornavirus proteins. Proc Natl Acad Sci U S A 70:1734–1738

    CAS  PubMed  Google Scholar 

  27. Anderson MP, et al (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205

    CAS  PubMed  Google Scholar 

  28. Bear CE, et al (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818

    CAS  PubMed  Google Scholar 

  29. Jovov B, Ismailov II, Benos DJ (1995) Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J Biol Chem 270:1521–1528

    CAS  PubMed  Google Scholar 

  30. Jovov B, et al (1995) Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J Biol Chem 270:29194–29200

    CAS  PubMed  Google Scholar 

  31. Bijman J, et al (1993) Low-conductance chloride channels in IEC-6 and CF nasal cells expressing CFTR. Am J Physiol 264:L229–L235

    CAS  PubMed  Google Scholar 

  32. Short DB, et al (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    CAS  PubMed  Google Scholar 

  33. Yun CH, Lamprecht G, Forster DV, Sidor A (1998) NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. J Biol Chem 273:25856–25863

    Article  CAS  PubMed  Google Scholar 

  34. Cormet-Boyaka, et al (2002) CFTR Cl channels are regulated by a t-SNARE complex in epithelial cells. Proc Natl Acad Sci USA 99:12477–12482

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Yue H, Derin RB, Guggino WB, Li M (2000) Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 103:169–179

    CAS  PubMed  Google Scholar 

  36. Nguyen DH, Hildreth JE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272

    Article  CAS  PubMed  Google Scholar 

  37. Sun F, et al (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J Biol Chem 275:29539–29546

    Article  CAS  PubMed  Google Scholar 

  38. Wills JW, Craven RC, Achacoso JA (1989) Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells. J Virol 63:4331–4343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Chris Yun and Mark Donowitz (Johns Hopkins University) for providing E3KARP antibody, Drs. Kevin Kirk and Estelle Cormet-Boyaka (University of Alabama at Birmingham) for providing SNAP-23 antibody, and Dr. Min Li (Johns Hopkins University) for antibody to CAP70. We also thank John Wills for pMyr1a construct, Eddie Walthall, Zsuzsa Bebok, and Susan Dubay for assistance and discussions, Leigh Millican at the University of Alabama at Birmingham Electron Microscopy Core, and Mrs. Mikelle Foster for help in manuscript preparation. This work is supported by the NIH and CFF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Sorscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curlee, K.V., Hong, J.S., Clancy, J.P. et al. Membrane transplantation to correct integral membrane protein defects. J Mol Med 81, 511–520 (2003). https://doi.org/10.1007/s00109-003-0446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0446-7

Keywords

Navigation