Skip to main content
Log in

Was ist gesichert in der Therapie des ischämischen Schlaganfalls?

What is confirmed in the treatment of ischemic stroke

  • Schwerpunkt: Was ist gesichert in der Therapie?
  • Published:
Die Innere Medizin Aims and scope Submit manuscript

Zusammenfassung

Der ischämische Schlaganfall stellt eine der häufigsten Todesursachen weltweit und die häufigste Ursache von permanenter Behinderung im Erwachsenenalter dar. Die Akuttherapie des Schlaganfalls ist zeitkritisch, und es gilt nach dem Time-is-brain-Prinzip, so rasch wie möglich zu prüfen, ob eine rekanalisierende Therapie möglich ist, welche die Penumbra retten kann. Als medikamentöse Therapie kommen die intravenöse Thrombolyse (IVT) und bei Identifikation eines Großgefäßverschlusses eine endovaskuläre Therapie (EVT) ggf. in Kombination mit einer IVT infrage. Die Weiterbehandlung auf einer Stroke Unit ist eine weitere wichtige Säule der Schlaganfallakuttherapie. Bereits in der Akutphase muss die beste sekundärprophylaktische Therapie eingeleitet werden. Die Schlaganfallursache leitet die Entscheidungsfindung zur optimalen sekundärpräventiven Strategie. Die wichtigsten Ätiologien des Schlaganfalls sind die kardiale Embolie, die atherosklerotisch bedingte Makroangiopathie sowie die zerebrale Mikroangiopathie („small vessel disease“). Seltenere Ursachen sind Dissektionen hirnversorgender Arterien oder Vaskulitiden. In bis zu 20–30 % aller Fälle lässt sich jedoch trotz intensiver Ursachenabklärung keine eindeutige Ätiologie feststellen, was entsprechend Unsicherheit in der optimalen Sekundärprävention bedeutet, die sich insbesondere aus einer der Ätiologie angepassten gerinnungswirksamen Medikation sowie der Therapie kardiovaskulärer Risikofaktoren und ggf. operativer bzw. interventioneller desobliterativer Verfahren zusammensetzt. Die vorliegende Arbeit beschreibt das diagnostische Vorgehen sowie die evidenzbasierte Therapie des ischämischen Schlaganfalls.

Abstract

Ischemic stroke is one of the leading causes of death worldwide and the most frequent cause of permanent disability in adulthood. The acute treatment of stroke is time-critical and, according to the time is brain principle, it is important to determine as soon as possible whether recanalization treatment that can save the penumbra is possible. Intravenous thrombolysis (IVT) and, if a large vessel occlusion is identified, endovascular treatment (EVT) possibly in combination with IVT, are recommended. Further treatment in a stroke unit is another important component of acute stroke treatment. The best secondary preventive treatment must already be initiated in the acute phase. The cause of stroke guides making decisions on the ideal secondary preventive strategy. The most important etiologies of stroke are cardiac embolism, atherosclerotic macroangiopathy and cerebral microangiopathy (small vessel disease). Less frequent causes are dissections of arteries supplying the brain or vasculitis. In up to 20–30% of all cases, however, no clear etiology can be determined despite intensive investigation of the cause. This means corresponding uncertainty in the optimal secondary prevention that consists in particular of an anticoagulant medication adapted to the etiology, treatment of cardiovascular risk factors and if necessary surgical or interventional desobliterative procedures. This article describes the diagnostic procedure and the evidence-based treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

ACI:

Arteria carotis interna

ASS:

Acetylsalicylsäure

BMT:

Best medical treatment

BZ:

Blutzucker

CCT:

Kraniale Computertomographie

cMRT:

Kraniale Magnetresonanztomographie

CT:

Computertomographie

DGN:

Deutsche Gesellschaft für Neurologie

DPAH:

Duale Plättchenaggregationshemmung

DSG:

Deutsche Schlaganfall-Gesellschaft e. V.

DWI:

Diffusionsgewichtete Sequenzen

EKG:

Elektrokardiogramm

ESC:

European Society of Cardiology

ESO:

European Stroke Organisation

ESUS:

Embolic stroke of undetermined source

eTICI:

Erweiterte Thrombolyse in „cerebral infarction“

EVT:

Endovascular treatment

FLAIR:

Fluid-attenuated inversion recovery

HR:

Hazard Ratio

IVT:

Intravenous thrombolysis

KI:

Konfidenzintervall

LDL‑C:

Low-density-Lipoprotein-Cholesterin

LVO:

Large vessel occlusion

MR:

Magnetresonanz

MRT:

Magnetresonanztomographie

NASCET:

The North American Symptomatic Carotid Endarterectomy Trial

NIHSS:

National Institutes of Health Stroke Scale

NNT:

Number needed to treat

NOAK:

Nicht-Vitamin-K-abhängige orale Antikoagulanzien

NT-proBNP:

N‑terminales pro Brain natriuretisches Peptid

PFO:

Persistierendes Foramen ovale

RoPE:

Risk of paradoxical embolism

rtPA:

Rekombinanter gewebespezifischer Plasminogenaktivator

TIA:

Transitorisch ischämische Attacke

VHF:

Vorhofflimmern

VKA:

Vitamin-K-Antagonisten

Literatur

  1. GBD 2019 Stroke Collaborators (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820

    Article  Google Scholar 

  2. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1587

    Article  Google Scholar 

  3. Goyal M et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731

    Article  PubMed  Google Scholar 

  4. Stroke Unit Trialists’ Collaboration (2013) Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000197.pub3

    Article  PubMed Central  Google Scholar 

  5. Kelly KM et al (2017) Community interventions to increase stroke preparedness and acute stroke treatment rates. Curr Atheroscler Rep 19(12):64

    Article  PubMed  Google Scholar 

  6. Smith EE et al (2018) Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute Ischemic stroke. Stroke 49(3):e111–e122

    PubMed  Google Scholar 

  7. Ringleb P et al (2022) Akuttherapie des ischämischen Schlaganfalls, S2e-Leitlinie. In: Deutsche Gesellschaft für Neurologie (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie (http://www.dgn.org/leitlinien. Zugegriffen: 02. Oktober 2023)

    Google Scholar 

  8. Hacke W et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329

    Article  CAS  PubMed  Google Scholar 

  9. Emberson J et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomalla G et al (2020) Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet 396(10262):1574–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sykora M et al (2020) Thrombolysis in stroke with unknown onset based on non-contrast computerized tomography (TRUST CT). J Am Heart Assoc 9(4):e14265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsivgoulis G, Katsanos AH, Malhotra K et al (2020) Thrombolysis for acute ischemic stroke in the unwitnessed or extended therapeutic time window. Neurology 94(12):e1241–e1248

    Article  PubMed  Google Scholar 

  13. Nabavi DG et al (2018) Zertifizierungskriterien für Stroke-Units in Deutschland: Update 2018. Nervenarzt 90(4):335–342

    Article  Google Scholar 

  14. Tao C et al (2022) Trial of endovascular treatment of acute basilar-artery occlusion. N Engl J Med 387(15):1361–1372

    Article  PubMed  Google Scholar 

  15. Jovin TG et al (2022) Trial of thrombectomy 6 to 24 hours after stroke due to basilar-artery occlusion. N Engl J Med 387(15):1373–1384

    Article  PubMed  Google Scholar 

  16. Nogueira RG et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378(1):11–21

    Article  PubMed  Google Scholar 

  17. Albers GW et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378(8):708–718

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saver JL et al (2016) Time to treatment with endovascular thrombectomy and outcomes from Ischemic stroke: a meta-analysis. JAMA 316(12):1279–1288

    Article  PubMed  Google Scholar 

  19. Goyal M et al (2014) 2C or not 2C: defining an improved revascularization grading scale and the need for standardization of angiography outcomes in stroke trials. J Neurointerv Surg 6(2):83–86

    Article  PubMed  Google Scholar 

  20. Turc G et al (2022) European Stroke Organisation—European Society for Minimally Invasive Neurological Therapy expedited recommendation on indication for intravenous thrombolysis before mechanical thrombectomy in patients with acute ischaemic stroke and anterior circulation large vessel occlusion. Eur Stroke J 7(1):I–XXVI

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reinink H et al (2021) Surgical decompression for space-occupying hemispheric infarction: a systematic review and individual patient meta-analysis of randomized clinical trials. JAMA Neurol 78(2):208–216

    Article  PubMed  Google Scholar 

  22. Adams HP Jr et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1):35–41

    Article  PubMed  Google Scholar 

  23. Hart RG et al (2007) Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 146(12):857–867

    Article  PubMed  Google Scholar 

  24. Diener HC et al (2020) Non-vitamin K oral anticoagulants for secondary stroke prevention in patients with atrial fibrillation. Eur Heart J 22(Suppl I):I13–i21

    Article  Google Scholar 

  25. Bruins Slot KM et al (2018) Factor Xa inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in patients with atrial fibrillation. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008980.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grosse GM et al (2023) Early or late initiation of dabigatran versus vitamin-K-antagonists in acute ischemic stroke or TIA: the PRODAST study. Int J Stroke. https://doi.org/10.1177/17474930231184366

    Article  PubMed  Google Scholar 

  27. January CT et al (2019) AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 74(1):104–132

    Article  PubMed  Google Scholar 

  28. Klijn CJ et al (2019) Antithrombotic treatment for secondary prevention of stroke and other thromboembolic events in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation: A European Stroke Organisation guideline. Eur Stroke J 4(3):198–223

    Article  PubMed  PubMed Central  Google Scholar 

  29. Steffel J et al (2021) European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace 23(10):1612–1676

    Article  PubMed  Google Scholar 

  30. Groot AE et al (2018) Continuation or discontinuation of anticoagulation in the early phase after acute Ischemic stroke. Stroke 49(7):1762–1765

    Article  PubMed  Google Scholar 

  31. García Rodríguez LA et al (2021) Discontinuation of oral anticoagulation in atrial fibrillation and risk of ischaemic stroke. Heart 107(7):542–548

    Article  Google Scholar 

  32. Seiffge DJ et al (2019) Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. Lancet Neurol 18:117–126

    Article  PubMed  Google Scholar 

  33. Oldgren J et al (2022) Early versus delayed non-vitamin K antagonist oral anticoagulant therapy after acute Ischemic stroke in atrial fibrillation (TIMING): a registry-based randomized controlled Noninferiority study. Circulation 146:1056–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer U et al (2023) Early versus later anticoagulation for stroke with atrial fibrillation. N Engl J Med 388:2411–2421

    Article  CAS  PubMed  Google Scholar 

  35. Best JG et al (2022) Optimal timing of anticoagulation after acute ischemic stroke with atrial fibrillation (OPTIMAS): protocol for a randomized controlled trial. Int J Stroke 17:583–589

    Article  PubMed  Google Scholar 

  36. King BT et al (2019) Optimal delay time to initiate anticoagulation after ischemic stroke in atrial fibrillation (START): methodology of a pragmatic, response-adaptive, prospective randomized clinical trial. Int J Stroke 14:977–982

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grosse GM et al (2021) Rationale, design and methods of the prospective record of the use of dabigatran in patients with acute stroke or TIA (PRODAST) study. Eur Stroke J 6:438–444

    Article  PubMed  PubMed Central  Google Scholar 

  38. Skurk C et al (2022) Perkutaner Vorhofohrverschluss. Nervenheilkunde 41:417–423

    Google Scholar 

  39. Rothwell PM (2008) Prediction and prevention of stroke in patients with symptomatic carotid stenosis: the high-risk period and the high-risk patient. Eur J Vasc Endovasc Surg 35(3):255–263

    Article  CAS  PubMed  Google Scholar 

  40. Orrapin S et al (2017) Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001081.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bonati LH et al (2021) European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur Stroke J 6(2):I–XLVII

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonati LH et al (2012) Percutaneous transluminal balloon angioplasty and stenting for carotid artery stenosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000515.pub4

    Article  PubMed  Google Scholar 

  43. Brott TG et al (2016) Long-term results of stenting versus endarterectomy for carotid-artery stenosis. N Engl J Med 374(11):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silverman S (2019) Management of asymptomatic carotid artery stenosis. Curr Treat Options Cardio Med 21(12):80

    Article  Google Scholar 

  45. Halliday A et al (2021) Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy. Lancet 398(10305):1065–1073

    Article  PubMed  PubMed Central  Google Scholar 

  46. Flusty B et al (2020) Intracranial atherosclerosis treatment. Stroke 51(3):e49–e53

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hart RG et al (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13(4):429–438

    Article  PubMed  Google Scholar 

  48. Diener HC et al (2019) Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med 380(20):1906–1917

    Article  CAS  PubMed  Google Scholar 

  49. Hart RG et al (2018) Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med 378(23):2191–2201

    Article  CAS  PubMed  Google Scholar 

  50. Schnabel RB et al (2019) Searching for atrial fibrillation poststroke: a white paper of the AF-SCREEN international collaboration. Circulation 140(22):1834–1850

    Article  PubMed  Google Scholar 

  51. Diener HC et al (2022) Review and update of the concept of embolic stroke of undetermined source. Nat Rev Neurol 18(8):455–465

    Article  CAS  PubMed  Google Scholar 

  52. Sievering EM et al (2023) Diagnostic value of carotid intima-media thickness and clinical risk scores in determining etiology of ischemic stroke. Eur Stroke J 8(3):738–746

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ntaios G et al (2018) Closure of patent foramen Ovale versus medical therapy in patients with cryptogenic stroke or transient Ischemic attack. Stroke 49(2):412–418

    Article  PubMed  Google Scholar 

  54. Diener H‑C et al (2018) Kryptogener Schlaganfall und offenes Foramen ovale, S2e-Leitlinie. Deutsche Gesellschaft für Neurologie (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie. https://register.awmf.org/assets/guidelines/030-142l_S2e_Kryptogener_Schlaganfall_2018-08-verlaengert.pdf. Zugegriffen: 9. Okt. 2023

  55. Kent DM et al (2013) An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. Neurology 81(7):619–625

    Article  PubMed  PubMed Central  Google Scholar 

  56. Diener H‑C et al (2021) Dabigatran or Aspirin after embolic stroke of undetermined source in patients with patent foramen ovale. Stroke 52(3):1065–1068

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y et al (2013) Clopidogrel with Aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 369(1):11–19

    Article  CAS  PubMed  Google Scholar 

  58. Johnston SC et al (2018) Clopidogrel and Aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med 379(3):215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan Y et al (2019) Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of clopidogrel in high-risk patients with acute non-disabling cerebrovascular events (CHANCE) and platelet-oriented inhibition in new TIA and minor Ischemic stroke (POINT) trials. JAMA Neurol 76(12):1466–1473

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hao Q et al (2018) Clopidogrel plus aspirin versus aspirin alone for acute minor ischaemic stroke or high risk transient ischaemic attack: systematic review and meta-analysis. BMJ 363:k5108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kleindorfer DO et al (2021) 2021 guideline for the prevention of stroke in patients with stroke and transient Ischemic attack: a guideline from the American Heart Association/American stroke association. Stroke 52(7):e364–e467

    Article  PubMed  Google Scholar 

  62. Lin CJ et al (2022) Dual vs. mono antiplatelet therapy for acute ischemic stroke or transient ischemic attack with evidence of large artery atherosclerosis. Front Neurol 13:923142

    Article  PubMed  PubMed Central  Google Scholar 

  63. Johnston SC et al (2020) Ticagrelor and aspirin or Aspirin alone in acute Ischemic stroke or TIA. N Engl J Med 383(3):207–217

    Article  CAS  PubMed  Google Scholar 

  64. https://clinicaltrials.gov/study/NCT04078737. Zugegriffen: 9. Okt. 2023

  65. Lee M et al (2022) Association between intensity of low-density lipoprotein cholesterol reduction with statin-based therapies and secondary stroke prevention: a meta-analysis of randomized clinical trials. JAMA Neurol 79(4):349–358

    Article  PubMed  PubMed Central  Google Scholar 

  66. Amarenco P et al (2020) A comparison of two LDL cholesterol targets after Ischemic stroke. N Engl J Med 382(1):9

    Article  CAS  PubMed  Google Scholar 

  67. Amarenco P et al (2020) Treat stroke to target investigators. Benefit of targeting a LDL (low-density lipoprotein) cholesterol 〈 70 mg/dL during 5 years after Ischemic stroke. Stroke 51(4):1231–1239

    Article  CAS  PubMed  Google Scholar 

  68. Oesterle A et al Pleiotropic effects of statins on the cardiovascular system. Circ Res 120(1):229–243

  69. Lee M et al (2017) Utilization of statins beyond the initial period after stroke and 1‑year risk of recurrent stroke. J Am Heart Assoc 6(8):e5658

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Worthmann.

Ethics declarations

Interessenkonflikt

Die Autoren geben an, als Prüfärzte in den klinischen Studien POINT, RE-SPECT ESUS, NAVIGATE-ESUS, THALES und PRODAST tätig gewesen zu sein. H. Worthmann erhält Forschungsförderung durch die Else-Kröner-Fresenius-Stiftung. J. Ernst wird unterstützt durch das Clinician Scientist Programm PRACTIS, gefördert von der Deutschen Forschungsgemeinschaft (DFG, ME 3696/3‐1). G. M. Grosse erhält Forschungsförderungen durch das Bundesministerium für Bildung und Forschung, das Niedersächsische Ministerium für Wissenschaft und Kultur und der Europäischen Kommission.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Hermann Haller, Hannover

Kai Schmidt-Ott, Hannover

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worthmann, H., Ernst, J. & Grosse, G.M. Was ist gesichert in der Therapie des ischämischen Schlaganfalls?. Innere Medizin 64, 1143–1153 (2023). https://doi.org/10.1007/s00108-023-01622-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-023-01622-x

Schlüsselwörter

Keywords

Navigation