Skip to main content
Log in

Präzisionsmedizin in der Infektiologie

Precision medicine in infectious diseases

  • Schwerpunkt: Präzisionsmedizin
  • Published:
Die Innere Medizin Aims and scope Submit manuscript

An Erratum to this article was published on 30 January 2024

This article has been updated

Zusammenfassung

Die Infektionsmedizin steht vor einer Vielzahl von Herausforderungen. Hierzu zählen die Zunahme von Antibiotikaresistenzen sowie die durch Klimawandel und Globalisierung begünstigte Entstehung und Ausbreitung infektiologischer Erkrankungen. Für viele dieser Herausforderungen kann die Präzisionsmedizin Lösungen bieten. Da eine ungezielte Anforderung diagnostischer Tests zu klinisch irrelevanten Testergebnissen führt, die den Einsatz von nicht indizierten Antibiotika erhöhen können, lautet das angestrebte Prinzip: gezielte Diagnostik („right test“) und Berücksichtigung der Patientencharakteristika („right person“) zur Optimierung des Managements („right action“). Gleichzeitig muss immer entschieden werden, ob eine sofortige empirische Therapie erforderlich ist, auch wenn die Ergebnisse der eingeleiteten Diagnostik noch nicht vorliegen. Zusätzlich wurden zuletzt viele neue Diagnostika zur raschen Erkennung sowie Therapien zur spezifischeren Behandlung von bakteriellen Infektionen entwickelt. Als neue Diagnostika setzen sich vor allem molekulargenetische Methoden durch, die raschere Ergebnisse bieten als klassische Bakterienkulturen. Neue Therapeutika wie Bakteriophagen, Antikörper oder antibakterielle Peptide erlauben eine immer präzisere Behandlung bestimmter bakterieller Infektionen. Die Präzisionsmedizin wird auch in der Infektionsmedizin einen immer größeren Stellenwert haben.

Abstract

Infectious medicine faces a variety of challenges, such as the increase in antibiotic resistance and the emergence and spread of infectious diseases fueled by climate change and globalization. Precision medicine can provide solutions to many of these challenges. Since an untargeted request for diagnostic tests can lead to test results without clinical relevance, which can increase the use of non-indicated antibiotics, the principle aimed at is: targeted diagnostics (the right test) and consideration of patient characteristics (the right person) to optimize management (the right action). At the same time, one must always decide whether empirical therapy must be immediately initiated, even if the results of the initiated diagnostics are not yet available. In addition, many new diagnostics as well as therapies have recently been developed for the rapid detection and more specific treatment of bacterial infections. Molecular genetic methods, which offer more rapid results than classical bacterial cultures, are gaining ground as new diagnostics. New therapeutics such as bacteriophages, antibodies or antibacterial peptides allow increasingly precise treatment of certain bacterial infections. Precision medicine will also play an increasingly important role in infectious medicine in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Change history

Literatur

  1. Adams J, Ferguson K, Hirschy R et al (2023) Antimicrobial stewardship techniques for critically ill patients with pneumonia. Antibiot (Basel) 12:295

  2. Baker RE, Mahmud AS, Miller IF et al (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20:193–205

    Article  CAS  PubMed  Google Scholar 

  3. Barlam TF, Cosgrove SE, Abbo LM et al (2016) Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of america and the society for healthcare epidemiology of america. Clin Infect Dis 62:1197–1202

    Article  PubMed  Google Scholar 

  4. Bell BG, Schellevis F, Stobberingh E et al (2014) A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berbari EF, Kanj SS, Kowalski TJ et al (2015) 2015 infectious diseases society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis 61:e26–e46

    Article  PubMed  Google Scholar 

  6. Beyda ND, Alam MJ, Garey KW (2013) Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis 77:324–326

    Article  CAS  PubMed  Google Scholar 

  7. Blumenthal KG, Kuper K, Schulz LT et al (2020) Association between penicillin allergy documentation and antibiotic use. JAMA Intern Med 180:1120–1122

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blumenthal KG, Phillips EJ (2020) Positioning drug allergy delabeling as a critical tool for precision medicine, quality improvement, and public health. J Allergy Clin Immunol Pract 8:2916–2919

    Article  PubMed  Google Scholar 

  9. Borch JE, Andersen KE, Bindslev-Jensen C (2006) The prevalence of suspected and challenge-verified penicillin allergy in a university hospital population. Basic Clin Pharmacol Toxicol 98:357–362

    Article  CAS  PubMed  Google Scholar 

  10. Cassini A, Hogberg LD, Plachouras D et al (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen H, Liu K, Li Z et al (2019) Point of care testing for infectious diseases. Clin Chim Acta 493:138–147

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Claeys KC, Trautner BW, Leekha S et al (2022) Optimal urine culture diagnostic stewardship practice-results from an expert modified-delphi procedure. Clin Infect Dis 75:382–389

    Article  PubMed  Google Scholar 

  13. Cullin N, Azevedo Antunes C, Straussman R et al (2021) Microbiome and cancer. Cancer Cell 39:1317–1341

    Article  CAS  PubMed  Google Scholar 

  14. Czaplewski L, Bax R, Clokie M et al (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16:239–251

    Article  CAS  PubMed  Google Scholar 

  15. D’andrea MM, Lau GW (2020) DNABII targeting antibodies as vaccines against biofilm diseases. EBioMedicine 58:102921

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davey P, Marwick CA, Scott CL et al (2017) Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Db Syst Rev. 2017 Feb 9;2(2):CD003543

  17. Davis JS, Ferreira D, Paige E et al (2020) Infectious complications of biological and small molecule targeted Immunomodulatory therapies. Clin Microbiol Rev 33:e00035-19

  18. De Luca F, Shoenfeld Y (2019) The microbiome in autoimmune diseases. Clin Exp Immunol 195:74–85

    Article  PubMed  Google Scholar 

  19. DGI (2019) S3-Leitlinie Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF

  20. Dinnes J, Sharma P, Berhane S et al (2022) Rapid, point-of-care antigen tests for diagnosis of SARS-CoV‑2 infection. Cochrane Database Syst Rev 7:CD13705

    PubMed  Google Scholar 

  21. Du Plessis T, Walls G, Jordan A et al (2019) Implementation of a pharmacist-led penicillin allergy de-labelling service in a public hospital. J Antimicrob Chemother 74:1438–1446

    Article  PubMed  Google Scholar 

  22. European Centre for Disease Prevention and Control (2022) Assessment of point of care testing devices for infectious disease surveillance, prevention and control – a mapping exercise. Stockholm: ECDC

  23. Evans L, Rhodes A, Alhazzani W et al (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 47:1181–1247

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fabre V, Davis A, Diekema DJ et al (2023) Principles of diagnostic stewardship: a practical guide from the society for Healthcare epidemiology of america diagnostic stewardship task force. Infect Control Hosp Epidemiol 44:178–185

    Article  PubMed  Google Scholar 

  25. Forbes S, Mcbain AJ, Felton-Smith S et al (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34:5453–5464

    Article  CAS  PubMed  Google Scholar 

  26. Fowkes FG (1985) Containing the use of diagnostic tests. Br Med J (Clin Res Ed) 290:488–490

    Article  CAS  PubMed  Google Scholar 

  27. Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Green JE, Davis JA, Berk M et al (2020) Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes 12:1–25

    Article  PubMed  Google Scholar 

  29. Gruell H, Vanshylla K, Weber T et al (2022) Antibody-mediated neutralization of SARS-CoV‑2. Immunity 55:925–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gwinn M, Maccannell D, Armstrong GL (2019) Next-generation sequencing of infectious pathogens. JAMA 321:893–894

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hibstu Z, Belew H, Akelew Y et al (2022) Phage therapy: a different approach to fight bacterial infections. Biologics 16:173–186

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hitchcock NM, Devequi Gomes Nunes D, Shiach J et al (2023) Current clinical landscape and global potential of bacteriophage therapy. Viruses 15(4):1020

  33. Jani S, Dave V, Pandya M, Brajpuriya R, Dave S (2023) Lab-on-a-chip devices for point-of-care infectious diseases diagnostics. In: Dave SDJ (Hrsg) Point-of-care biosensors for infectious diseases

    Google Scholar 

  34. Jung N (2016) Klug entscheiden in der Infektiologie. Dtsch Ärztebl 113:A-608/B-514/C-510

  35. Jung N, Tometten L, Draenert R (2023) Choosing wisely internationally—helpful recommendations for antimicrobial stewardship! Infection 51:567–581

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kane TL, Carothers KE, Lee SW (2018) Virulence factor targeting of the bacterial pathogen staphylococcus aureus for vaccine and therapeutics. Curr Drug Targets 19:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khodamoradi Y, Kessel J, Vehreschild JJ et al (2019) The role of microbiota in preventing multidrug-resistant bacterial infections. Dtsch Ärztebl Int 116:670–676

    PubMed  PubMed Central  Google Scholar 

  38. Kim H, Huh HJ, Park E et al (2021) Multiplex molecular point-of-care test for syndromic infectious diseases. BioChip J 15:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein EY, Van Boeckel TP, Martinez EM et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. P Natl Acad Sci USA 115:E3463–E3470

    Article  CAS  Google Scholar 

  40. Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111:e24122.

  41. Kraus EM, Pelzl S, Szecsenyi J et al (2017) Antibiotic prescribing for acute lower respiratory tract infections (LRTI)—guideline adherence in the German primary care setting: an analysis of routine data. PLoS ONE 12:e174584

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368(6490):eaau5480

  43. Li H, Bai R, Zhao Z et al (2018) Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 38(6):BSR20181170

  44. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379

    Article  CAS  PubMed  Google Scholar 

  45. Minkoff NZ, Aslam S, Medina M et al (2023) Fecal microbiota transplantation for the treatment of recurrent clostridioides difficile (clostridium difficile). Cochrane Database Syst Rev 4:CD13871

    PubMed  Google Scholar 

  46. Moser C, Lerche CJ, Thomsen K et al (2019) Antibiotic therapy as personalized medicine—general considerations and complicating factors. Apmis 127:361–371

    Article  PubMed  Google Scholar 

  47. Mustafa MI, Makhawi AM (2021) SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol 59(3):e00745-20

  48. Neyton LPA, Langelier CR, Calfee CS (2023) Metagenomic sequencing in the ICU for precision diagnosis of critical infectious illnesses. Crit Care 27:90

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pantaleo G, Correia B, Fenwick C et al (2022) Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 21:676–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patel R (2015) MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 61:100–111

    Article  CAS  PubMed  Google Scholar 

  51. Peker N, Couto N, Sinha B et al (2018) Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect 24:944–955

    Article  CAS  PubMed  Google Scholar 

  52. Petty LA, Vaughn VM, Flanders SA et al (2019) Risk factors and outcomes associated with treatment of asymptomatic bacteriuria in hospitalized patients. JAMA Intern Med 179:1519–1527

    Article  PubMed  PubMed Central  Google Scholar 

  53. Philipson CW, Voegtly LJ, Lueder MR et al (2018) Characterizing phage genomes for therapeutic applications. Viruses 10(4):188

  54. Plachouras D, Karki T, Hansen S et al (2018) Antimicrobial use in european acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Euro Surveill 23(46):1800393

  55. Ranjbar R, Alam M (2023) Antimicrobial resistance collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Evid Based Nurs

  56. Reinwald M, Silva JT, Mueller NJ et al (2018) ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect 24(Suppl 2):S53–S70

    Article  PubMed  Google Scholar 

  57. Ryszard Międzybrodzki NH (2021) Fikria Zhvaniya, Marzanna Łusiak-Szelachowska, Beata Weber-Dąbrowska, Małgorzata Łobocka, Jan Borysowski, Zemphira Alavidze, Elizabeth Kutter, Andrzej Górski & Lasha Gogokhia. In: Harper DR, Abedon ST, Burrowes BH, McConville ML (Hrsg) Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. Bacteriophages. Springer, Cham

    Chapter  Google Scholar 

  58. Siribhadra A, Ngamprasertchai T, Rattanaumpawan P et al (2022) Antimicrobial stewardship in tropical infectious diseases: focusing on dengue and malaria. Trop Med Infect Dis 7(8):159

  59. Sullivan KV (2021) Diagnostic stewardship in clinical microbiology, essential partner to antimicrobial stewardship. Clin Chem 68:75–82

    Article  PubMed  Google Scholar 

  60. Talukder B, Vanloon GW, Hipel KW (2022) Planetary health & COVID-19: a multi-perspective investigation. One Health 15:100416

    Article  PubMed  PubMed Central  Google Scholar 

  61. Troisi M, Marini E, Abbiento V et al (2022) A new dawn for monoclonal antibodies against antimicrobial resistant bacteria. Front Microbiol 13:1080059

    Article  PubMed  PubMed Central  Google Scholar 

  62. Trubiano JA, Cairns KA, Evans JA et al (2015) The prevalence and impact of antimicrobial allergies and adverse drug reactions at an australian tertiary centre. BMC Infect Dis 15:572

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ward RA, Aghaeepour N, Bhattacharyya RP et al (2021) Harnessing the potential of multiomics studies for precision medicine in infectious disease. Open Forum Infect Dis 8:ofab483

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watkins RR (2022) Antibiotic stewardship in the era of precision medicine. JAC Antimicrob Resist 4:dlac66

    Article  PubMed  PubMed Central  Google Scholar 

  65. Werner G, Abu Sin M, Bahrs C et al (2023) Therapierelevante Antibiotikaresistenzen im One-Health-Kontext. Bundesgesundheitsbl 66:628–643

    Article  Google Scholar 

  66. WHO (2023) Local-level policy recommendations: operationalizing a one health approach

    Google Scholar 

  67. WHO (2019) Ten threats to global health in 2019

    Google Scholar 

  68. Willemsen I, Van Den Broek R, Bijsterveldt T et al (2007) A standardized protocol for perioperative antibiotic prophylaxis is associated with improvement of timing and reduction of costs. J Hosp Infect 67:156–160

    Article  CAS  PubMed  Google Scholar 

  69. Wong F, De La Fuente-Nunez Collins CJJ (2023) Leveraging artificial intelligence in the fight against infectious diseases. Science 381:164–170

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Zschachlitz T, Kumpfel R, Niemann H et al (2023) The implications of the concepts one health and planetary health for the environmental medicine of the 21st century. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 66:669–676

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zurawski DV, Mclendon MK (2020) Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiot (Basel) 9(4):155

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jung Dipl.-Chem..

Ethics declarations

Interessenkonflikt

N. Jung erhielt Vortragshonorare von AbbVie, Bayer, Infectopharm und Medacta, Reisekostenzuschüsse von Gilead und Pfizer und Beraterhonorare von MSD.

P. Schommers erhielt Vortags- und Beraterhonorare von Gilead und VIIV, Drittmittelunterstützung von Gilead und hat Patente zu antiinfektiven Antikörpern angemeldet.

C. Leisse gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Andreas Neubauer, Marburg

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Die Originalversion wurde korrigiert: Die Adressdaten bzw. die Daten zur institutionellen Zugehörigkeit der Autoren waren falsch angegeben.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, N., Schommers, P. & Leisse, C. Präzisionsmedizin in der Infektiologie. Innere Medizin 65, 220–227 (2024). https://doi.org/10.1007/s00108-023-01620-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-023-01620-z

Schlüsselwörter

Keywords

Navigation