Skip to main content
Log in

Wenn maschinelle Beatmung nicht mehr ausreicht – venovenöse extrakorporale Membranoxygenierung

When mechanical ventilation fails—Venovenous extracorporeal membrane oxygenation

  • Schwerpunkt: Neue Entwicklungen in der internistischen Intensivmedizin
  • Published:
Die Innere Medizin Aims and scope Submit manuscript

Zusammenfassung

Die venovenöse extrakorporale Membranoxygenierung (vv-ECMO) wird bisher vorwiegend als Rescue-Maßnahme bei Patienten im akuten Lungenversagen mit schwerer Oxygenierungs- und/oder Decarboxylierungsstörung angewendet. Venös eingebrachte Kanülen führen Blut durch einen Membranoxygenator, in dem es über Spülgas („sweep gas“) mit Sauerstoff oxygeniert (pO2 bis zu 600 mm Hg) und CO2 eliminiert wird. Die zwei wesentlichen Indikationen für eine vv-ECMO sind nach der bisher größten randomisierten Studie das hypoxische Atemversagen (paO2 < 80 mm Hg für mehr als 6 h) und die refraktäre Hyperkapnie (pH < 7,25 und pCO2 > 60 mm Hg unter einer Beatmungsfrequenz von über 30/min), jeweils unter einer protektive Beatmung beim „acute respiratory distress syndrome“ (ARDS; Δp < 14 mbar, Plateaudruck < 30 mbar, Tidalvolumen VT < 6 ml/kg idealisiertes Körpergewicht). Relative Kontraindikationen sind eine lebenslimitierende Komorbidität oder terminale Lungenerkrankungen, die nicht mittels Lungentransplantation behandelt werden können. Das Alter stellt keine absolute Kontraindikation dar, verschlechtert aber die Prognose, insbesondere bei Coronavirus-disease-2019(COVID-19)-Pneumonien. Zu den häufigsten Komplikationen der vv-ECMO zählen Blutungen, Thrombenbildung und seltener kanülenassoziierte Infektionen. Ein Einsatz bei nichtintubierten Patienten („Wach-ECMO“) ist in seltenen Fällen möglich und insbesondere als „bridge to transplant“ sinnvoll. Einige ECMO-Zentren bieten eine Kanülierung im peripheren Krankenhaus mit anschließendem Transport zum Zentrum („ECMO-Transport“) an. Die COVID-19-Pandemie hat nicht nur zu einer weiteren Verbreitung der vv-ECMO geführt, sondern dieses extrakorporale Verfahren auch in den Blickpunkt der Öffentlichkeit gerückt. Die nahe Zukunft bringt hoffentlich eine deutlich strengere Qualitätskontrolle und eine daraus resultierende Verbesserung im Rahmen der Krankenhausreform, zumal die Technik mit einem erheblichen Ressourcenverbrauch und in den Händen Ungeübter mit einer hohen Mortalität einhergeht.

Abstract

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is predominantly being used as a rescue strategy in patients with acute lung failure, suffering from severe oxygenation and/or decarboxylation impairment. Cannulas introduced into the central veins lead blood through a membrane oxygenator in which it is oxygenated via sweep gas (pO2 up to 600 mm Hg) flow, eliminating CO2. According to the largest randomized studies carried out so far, the two most important indications for VV-ECMO are hypoxic respiratory failure (paO2 < 80 mm Hg for more than 6 h) and refractory hypercapnia (pH < 7.25 und pCO2 > 60 mm Hg with a breathing frequency of >30/min) despite optimal protective mechanical ventilation settings (ARDS, Δp < 14 mbar, plateau pressure < 30 mbar, tidal volume VT < 6 ml/kg idealized body weight). Relative contraindications are life-limiting comorbidities and terminal pulmonary diseases that cannot be treated by lung transplantation. Advanced patient age is not regarded as an absolute contraindication, though it highly impacts ARDS survival rates, especially for pneumonia associated with coronavirus disease 2019 (COVID-19). The most frequent complications of VV-ECMO include bleeding, thrombus formation and rare cases of cannula-associated infections. Its use in nonintubated patients (awake ECMO) is possible in specific cases and has proven valuable as a bridge to lung transplant approach. Some ECMO centers offer cannulation of a patient at primary care hospitals, facilitating subsequent transport to the center (ECMO transport). The COVID-19 pandemic not only caused the number of VV-ECMO runs to skyrocket but has also drawn public attention to this extracorporeal procedure. Strict quality control to improve vvECMO outcomes according to the German hospital reform is urgently needed, especially so since the technique has a high demand in resources and bears significant risks when performed by untrained personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

ACT:

„Activated clotting time“

aPTT:

Aktivierte partielle Thromboplastinzeit

ARDS:

„Acute respiratory distress syndrome“

BGA:

Blutgasanalyse

COVID-19:

„Coronavirus disease 2019“

CRI:

„Cannula-related infection“

CTCAE:

Common Terminology Criteria for Adverse Events

ECCO2R:

„Extracorporeal CO2 removal“ (extrakorporale CO2-Entfernung)

ECLS:

„Extracorporeal life support“

ECMO:

Extrakorporale Membranoxygenierung

ELSO:

Extracorporeal Life Support Organization

FIO2 :

Inspiratorische Sauerstofffraktion

IBW:

„Ideal body weight“ (idealisiertes Körpergewicht)

ICB:

Intrakranielle Blutung

ILA:

„Interventional lung assist“

IMV:

„Intermittent mandatory ventilation“

LDH:

Laktatdehydrogenase

MSSA:

Methicillinsensibler Staphylococcus aureus

NCI:

US National Cancer Institute

paCO2 :

Arterieller Kohlendioxidpartialdruck

paO2 :

Arterieller Sauerstoffpartialdruck

PEEP:

Positiver endexspiratorischer Druck

OR:

Odds Ratio

PEEP:

Positiver endexspiratorischer Druck

PMP:

Polymethylpenten

PP:

Polypropylen

PRESERVE:

Predicting Death for Severe ARDS on vv-ECMO

PRESET:

Prediction of Survival on ECMO Therapy

RCT:

Randomisierte, kontrollierte Studie

SIRS:

„Systemic inflammatory response syndrome“

VT :

Tidalvolumen

va:

Venoarteriell

VILI:

„Ventilator-induced lung injury“

vv:

Venovenös

WHO:

World Health Organization

Literatur

  1. Sauer CM, Yuh DD, Bonde P (2015) Extracorporeal membrane oxygenation use has increased by 433 % in adults in the United States from 2006 to 2011. ASAIO J 61(1):31–36

    CAS  PubMed  Google Scholar 

  2. Munshi L, Walkey A, Goligher EC et al (2019) Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 7(2):163–172

    PubMed  Google Scholar 

  3. Goligher EC, Tomlinson G, Hajage D et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA 320(21):2251–2259

    PubMed  Google Scholar 

  4. Banfi C, Pozzi M, Siegenthaler N et al (2016) Veno-venous extracorporeal membrane oxygenation: cannulation techniques. J Thorac Dis 8(12):3762–3773

    PubMed  PubMed Central  Google Scholar 

  5. Gajkowski EF, Herrera G, Hatton L, Velia Antonini M, Vercaemst L, Cooley E (2022) ELSO guidelines for adult and pediatric extracorporeal membrane oxygenation circuits. ASAIO J 68(2):133–152

    PubMed  Google Scholar 

  6. Tonna JE, Abrams D, Brodie D et al (2021) Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO J 67(6):601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Joyce CJ, Shekar K, Cook DA (2018) A mathematical model of CO2, O2 and N2 exchange during venovenous extracorporeal membrane oxygenation. Intensive Care Med Exp 6:25

    PubMed  PubMed Central  Google Scholar 

  8. Lehle K, Philipp A, Hiller K‑A et al (2014) Efficiency of gas transfer in venovenous extracorporeal membrane oxygenation: analysis of 317 cases with four different ECMO systems. Intensive Care Med 40(12):1870–1877

    CAS  PubMed  Google Scholar 

  9. Strassmann S, Merten M, Schäfer S et al (2019) Impact of sweep gas flow on extracorporeal CO2 removal (ECCO2R). Intensive Care Med Exp 7(1):17

    PubMed  PubMed Central  Google Scholar 

  10. Hill JD (1982) John H. Gibbon, Jr. Part I. The development of the first successful heart-lung machine. Ann Thorac Surg 34(3):337–341

    CAS  PubMed  Google Scholar 

  11. Hill JD, O’Brien TG, Murray JJ et al (1972) Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 286(12):629–634

    CAS  PubMed  Google Scholar 

  12. Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242(20):2193–2196

    CAS  PubMed  Google Scholar 

  13. Bartlett RH, Gazzaniga AB, Jefferies MR et al (1976) Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs 22:80–93

    CAS  PubMed  Google Scholar 

  14. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374(9698):1351–1363

    PubMed  Google Scholar 

  15. Combes A, Hajage D, Capellier G et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 378(21):1965–1975

    PubMed  Google Scholar 

  16. Ashbaugh DG, Bigelow DB, Petty TL et al (1967) Acute Respiratory Distress in Adults. Lancet 2(7511):319–323

    CAS  PubMed  Google Scholar 

  17. Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242(20):2193–1296

    CAS  PubMed  Google Scholar 

  18. Murray JF, Matthay MA, Luce JM et al (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723

    CAS  PubMed  Google Scholar 

  19. Morris AH, Wallace CJ, Menlove RL et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149:295–305

    CAS  PubMed  Google Scholar 

  20. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA et al (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308

    Google Scholar 

  21. Patroniti N, Zangrillo A, Pappalardo F et al (2011) The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37:1447–1457

    PubMed  PubMed Central  Google Scholar 

  22. Miller RR, Markewitz BA, Rolfs RT, Brown SM, Dascomb KK, Grissom CK et al (2010) Clinical findings and demographic factors associated with ICU admission in Utah due to novel 2009 influenza A(H1N1) infection. Chest 137:752–758

    PubMed  PubMed Central  Google Scholar 

  23. Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS. Intensive Care Med 39:847–856

    PubMed  PubMed Central  Google Scholar 

  24. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    CAS  PubMed  Google Scholar 

  25. Amato MBP, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755

    CAS  PubMed  Google Scholar 

  26. Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800

    CAS  PubMed  Google Scholar 

  27. Friedrichson B, Mutlak H, Zacharowski K et al (2021) Insight into ECMO, mortality and ARDS: a nationwide analysis of 45,647 ECMO runs. Crit Care 25(1):38

    PubMed  PubMed Central  Google Scholar 

  28. Karagiannidis C, Slutsky AS, Bein T et al (2021) Complete countrywide mortality in COVID patients receiving ECMO in Germany throughout the first three waves of the pandemic. Crit Care 25:413

    PubMed  PubMed Central  Google Scholar 

  29. Barbaro RP, MacLaren G, Boonstra PS et al (2020) Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the extracorporeal life support organization registry. Lancet 396(10257):1071–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  30. CDC COVID-19 Response Team (2020) Severe outcomes among patients with Coronavirus disease 2019 (COVID-19)—United States, february 12-march 16, 2020. Mmwr Morb Mortal Wkly Rep 69(12):343–346

    PubMed Central  Google Scholar 

  31. Gattinoni L, Giosa L, Bonifazi M et al (2019) Targeting transpulmonary pressure to prevent ventilator-induced lung injury. Expert Rev Respir Med 13(8):737–746

    CAS  PubMed  Google Scholar 

  32. Grasselli G, Calfee CS, Camporota L et al (2023) ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 49(7):727–759

    PubMed  PubMed Central  Google Scholar 

  33. https://www.g-ba.de/downloads/40-268-7332/2021-02-18_Zentrums-Regelungen_IDV-Zentren_ZD.pdf. Zugegriffen: 14. Juli 2023

  34. Messika J, Roux A, Dauriat G et al (2022) Lung transplantation in the COVID-19 era: a multi-faceted challenge. Respir Med Res 81:100866

    PubMed  Google Scholar 

  35. Lepper PM, Langer F, Wilkens H et al (2021) Lung transplantation for COVID-19-associated ARDS. Lancet Respir Med 9(9):e88

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsiouris A, Budev MM, Yun JJ (2018) Extracorporeal membrane oxygenation as a bridge to lung transplantation in the United States: a multicenter survey. ASAIO J 64(5):689–693

    CAS  PubMed  Google Scholar 

  37. Herrmann J, Lotz C, Karagiannidis C et al (2022) Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation. Crit Care 26(1):190

    PubMed  PubMed Central  Google Scholar 

  38. Muellenbach RM, Kredel M, Kunze E et al (2012) Prolonged heparin-free extracorporeal membrane oxygenation in multiple injured acute respiratory distress syndrome patients with traumatic brain injury. J Trauma Acute Care Surg 72(5):1444–1447

    PubMed  Google Scholar 

  39. Ramanathan K, Shekar K, Ling RR et al (2021) Extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. Crit Care 25(1):211

    PubMed  PubMed Central  Google Scholar 

  40. Barbaro RP, MacLaren G, Boonstra PS (2021) Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international extracorporeal life support organization registry. Lancet 398(10307):1230–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kochanek M, Kochanek J, Böll B et al (2022) Veno-venous extracorporeal membrane oxygenation (vv-ECMO) for severe respiratory failure in adult cancer patients: a retrospective multicenter analysis. Intensive Care Med 48(3):332–342

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt M, Schellongowski P, Patroniti N et al (2018) Six-month outcome of Immunocompromised patients with severe acute respiratory distress syndrome rescued by extracorporeal membrane oxygenation. An international multicenter retrospective study. Am J Respir Crit Care Med 197(10):1297–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bohman JK, Vogt MN, Hyder JA (2016) Retrospective report of contraindications to extracorporeal membrane oxygenation (ECMO) among adults with acute respiratory distress syndrome (ARDS). Heart Lung 45(3):227–231

    PubMed  Google Scholar 

  44. Kunavarapu C, Yeramameni S, Melo J et al (2021) Clinical outcomes of severe COVID-19 patients receiving early VV-ECMO and the impact of pre-ECMO ventilator use. Int J Artif Organs 44(11):861–867

    CAS  PubMed  Google Scholar 

  45. Mang S, Reichert L, Muellenbach RM et al (2023) Transfer of veno-venous extracorporeal membrane oxygenation patients with COVID-19 associated acute respiratory distress syndrome. ASAIO J 69(8):789–794. https://doi.org/10.1097/MAT.0000000000001954

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt M, Zogheib E, Rozé H et al (2013) The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med 39(10):1704–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nunez JI, Gosling AF, O’Gara B et al (2022) Bleeding and thrombotic events in adults supported with venovenous extracorporeal membrane oxygenation: an ELSO registry analysis. Intensive Care Med 48(2):213–224

    CAS  PubMed  Google Scholar 

  48. Basken R, Cosgrove R, Malo J et al (2019) Predictors of oxygenator exchange in patients receiving extracorporeal membrane oxygenation. J Extra Corpor Technol 51(2):61–66

    PubMed  PubMed Central  Google Scholar 

  49. Pieri M, Agracheva N, Bonaveglio N et al (2013) Bivalirudin versus heparin as an anticoagulant during extracorporeal membrane oxygenation: a case-control study. J Cardiothorac Vasc Anesth 27(1):30–34

    CAS  PubMed  Google Scholar 

  50. Sclar MC, Sy E, Lequier L et al (2016) Anticoagulation practices during venovenous extracorporeal membrane oxygenation for respiratory failure. A systematic review. Ann Am Thorac Soc 13(12):2242–2250

    Google Scholar 

  51. Seeliger B, Döbler M, Friedrich R et al (2021) Comparison of anticoagulation strategies for veno-venous ECMO support in acute respiratory failure. Crit Care 24(1):701

    PubMed  PubMed Central  Google Scholar 

  52. Vaquer S, de Haro C, Peruga P et al (2017) Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann Intensive Care 7(1):51

    PubMed  PubMed Central  Google Scholar 

  53. Lorusso R, Gelsomino S, Parise O et al (2017) Neurologic injury in adults supported with veno-venous extracorporeal membrane oxygenation for respiratory failure: findings from the extracorporeal life support organization database. Crit Care Med 45(8):1389–1397

    PubMed  Google Scholar 

  54. von Stillfried S, Bülow RD, Röhrig R et al (2022) Intracranial hemorrhage in COVID-19 patients during extracorporeal membrane oxygenation for acute respiratory failure: a nationwide register study report. Crit Care 26(1):83

    Google Scholar 

  55. Aubron C, DePuydt J, Belon F et al (2016) Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann Intensive Care 6(1):97

    PubMed  PubMed Central  Google Scholar 

  56. Allou N, Pinto LH, Persichini R et al (2019) Cannula-related infection in patients supported by peripheral ECMO: clinical and microbiological characteristics. ASAIO J 65(2):180–186

    PubMed  Google Scholar 

  57. Bizzarro MJ, Conrad SA, Kaufman DA et al (2011) Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr Crit Care Med 12(3):277–281

    PubMed  Google Scholar 

  58. Hilder M, Herbstreit F, Adamzik M et al (2017) Comparison of mortality prediction models in acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation and development of a novel prediction score: the PREdiction of Survival on ECMO Therapy-Score (PRESET-Score). Crit Care 21(1):301

    PubMed  PubMed Central  Google Scholar 

  59. Pappalardo F, Pieri M, Greco T et al (2013) Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: the ECMOnet score. Intensive Care Med 39(2):275–281

    PubMed  Google Scholar 

  60. Xu Z, Xu Y, Liu D et al (2021) Case report: prolonged VV-ECMO (111 days) support in a patient with severe COVID-19. Front Med (Lausanne) 8:681548

    PubMed  Google Scholar 

  61. Wiktor AJ, Haft JW, Bartlett RH et al (2015) Prolonged VV ECMO (265 days) for ARDS without technical complications. ASAIO J 61(2):205–206

    PubMed  Google Scholar 

  62. Raasveld SJ, Taccone FS, Broman LM et al (2022) Outcomes of extracorporeal membrane oxygenation in COVID-19-induced acute respiratory distress syndrome: an inverse probability weighted analysis. Crit Care Explor 4(10):e770. https://doi.org/10.1097/CCE.0000000000000770

    Article  PubMed  PubMed Central  Google Scholar 

  63. Danial P, Olivier M‑E, Bréchot N et al (2023) Association between shock etiology and 5‑year outcomes after venoarterial extracorporeal membrane oxygenation. J Am Coll Cardiol 81(9):897–909

    CAS  PubMed  Google Scholar 

  64. Herridge MS, Tansey CM, Matté A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364(14):1293–1304

    CAS  PubMed  Google Scholar 

  65. Kurniavati ER, Rutjens VGH, Vranken NPH et al (2021) Quality of life following adult veno-venous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review. Qual Life Res 30(8):2123–2135

    Google Scholar 

  66. Sturgill JL, Mayer KP, Kalema AG et al (2023) Post-intensive care syndrome and pulmonary fibrosis in patients surviving ARDS-pneumonia of COVID-19 and non-COVID-19 etiologies. Sci Rep 13(1):6554

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Freeman CL, Bennett TD, Casper TC et al (2014) Pediatric and neonatal extracorporeal membrane oxygenation: does center volume impact mortality? Crit Care Med 42(3):512–519

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kau M, Steltner JC, Lepper PM et al (2022) First use of a new extracorporeal membrane oxygenation system in COVID 19-associated adult respiratory distress syndrome: the mobybox device. ASAIO J 68(8):996–1001

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp M. Lepper.

Ethics declarations

Interessenkonflikt

S. Mang, C. Karagiannidis und P.M. Lepper geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Michael Hallek, Köln

Matthias Kochanek, Köln

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mang, S., Karagiannidis, C. & Lepper, P.M. Wenn maschinelle Beatmung nicht mehr ausreicht – venovenöse extrakorporale Membranoxygenierung. Innere Medizin 64, 922–931 (2023). https://doi.org/10.1007/s00108-023-01586-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-023-01586-y

Schlüsselwörter

Keywords

Navigation