Skip to main content
Log in

Mikrobiom und metabolisches Syndrom – ein Henne-Ei-Problem?

The microbiome and metabolic syndrome: is this a chicken-or-egg problem?

  • Schwerpunkt: Fettstoffwechsel und Metabolisches Syndrom
  • Published:
Die Innere Medizin Aims and scope Submit manuscript

Zusammenfassung

Das Mikrobiom ist hinsichtlich seiner physiologischen und pathophysiologischen Relevanz im letzten Jahrzehnt immer mehr in den Fokus der Forschung gerückt. Erkenntnisgewinne über die Funktionsweise unseres Mikrobioms verdeutlichen dessen Einfluss auf den Metabolismus. Ebenso werden die Wechselwirkungen mit der Entstehung des metabolischen Syndroms offensichtlich, gleichzeitig entstehen aber neue Fragen: Wird das Mikrobiom dysbiotisch, bevor oder nachdem es zu einem pathologischen Stoffwechsel gekommen ist? Gibt es Möglichkeiten, das Darmmikrobiom zur Therapie des metabolischen Syndroms oder seiner Folgeerkrankungen zu nutzen? Ziel dieses Übersichtsbeitrags ist, jenseits des Modebegriffs „Mikrobiom“ über aktuelle Forschungsansätze zu berichten, die auch für den praktisch tätigen Internisten relevant sind.

Abstract

The microbiome has become recognized as a critical player in the understanding of human physiology and pathophysiology, especially with regard to the metabolic syndrome. While recent findings emphasize the impact of the microbiome on metabolic health, new questions simultaneously arise: Is there a dysbiotic microbiome before the onset of metabolic disorders or is dysbiosis caused by a deranged metabolism? Furthermore, are there opportunities to employ the microbiome as a tool for novel treatment strategies in patients with metabolic syndrome? The intention of this review article is to describe the fashionable term “microbiome” beyond its current research approaches, which will be relevant to the practicing internist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17:461–463

    Article  CAS  PubMed  Google Scholar 

  2. Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolnick HJ, Bui AL, Bulchis A et al (2020) Health-care spending attributable to modifiable risk factors in the USA: an economic attribution analysis. Lancet Public Health 5:e525–e535

    Article  PubMed  Google Scholar 

  4. Bortolin RC, Vargas AR, Gasparotto J et al (2018) A new animal diet based on human western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (Lond) 42:525–534

    Article  CAS  PubMed  Google Scholar 

  5. Breton J, Tennoune N, Lucas N et al (2016) Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 23:324–334

    Article  CAS  PubMed  Google Scholar 

  6. Carmody RN, Gerber GK, Luevano JM Jr. et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17:72–84

    Article  CAS  PubMed  Google Scholar 

  7. Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42:49–53

    Article  PubMed  Google Scholar 

  8. Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed  Google Scholar 

  10. Depommier C, Everard A, Druart C et al (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25:1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fahed G, Aoun L, Bou Zerdan M et al (2022) Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci 23(2):786. https://doi.org/10.3390/ijms23020786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franck M, de Toro-Martín J, Vohl M‑C (2022) Eco-evolutionary dynamics of the human-gut microbiota symbiosis in a changing nutritional environment. Evol Biol 49:255–264

    Article  Google Scholar 

  14. Funabashi M, Grove TL, Wang M et al (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez De Aguero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302

    Article  PubMed  Google Scholar 

  16. Goryakin Y, Thiebaut SP, Cortaredona S et al (2020) Assessing the future medical cost burden for the European health systems under alternative exposure-to-risks scenarios. PLoS ONE 15:e238565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gurung M, Li Z, You H et al (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gutierrez Lopez DE, Lashinger LM, Weinstock GM et al (2021) Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab 33:873–887

    Article  CAS  PubMed  Google Scholar 

  19. Gutzeit C, Magri G, Cerutti A (2014) Intestinal IgA production and its role in host-microbe interaction. Immunol Rev 260:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall KD, Farooqi IS, Friedman JM et al (2022) The energy balance model of obesity: beyond calories in, calories out. Am J Clin Nutr 115:1243–1254

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hild B, Dreier MS, Oh JH et al (2021) Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab 3:1042–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  PubMed Central  Google Scholar 

  24. Koeth RA, Lam-Galvez BR, Kirsop J et al (2019) l‑carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 129:373–387

    Article  PubMed  Google Scholar 

  25. Li R, Andreu-Sanchez S, Kuipers F et al (2021) Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 35:101493

    Article  CAS  PubMed  Google Scholar 

  26. Ma C, Han M, Heinrich B et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360(6391):eaan5931. https://doi.org/10.1126/science.aan5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malard F, Dore J, Gaugler B et al (2021) Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 14:547–554

    Article  CAS  PubMed  Google Scholar 

  28. Mcloughlin K, Schluter J, Rakoff-Nahoum S et al (2016) Host selection of microbiota via differential adhesion. Cell Host Microbe 19:550–559

    Article  CAS  PubMed  Google Scholar 

  29. Napolitano M, Covasa M (2020) Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol 11:590370

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sato FT, Yap YA, Crisma AR et al (2020) Tributyrin attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. Cells 9(9):2007. https://doi.org/10.3390/cells9092007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schluter J, Foster KR (2012) The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 10:e1001424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen X, Li L, Sun Z et al (2021) Gut microbiota and atherosclerosis-focusing on the plaque stability. Front Cardiovasc Med 8:668532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sonnenburg JL, Sonnenburg ED (2019) Vulnerability of the industrialized microbiota. Science 366(6464):eaaw9255

    Article  CAS  PubMed  Google Scholar 

  36. Stacy A, Andrade-Oliveira V, Mcculloch JA et al (2021) Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184:615–627.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanoue T, Honda K (2012) Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 24:50–57

    Article  CAS  PubMed  Google Scholar 

  38. Thaiss CA, Levy M, Korem T et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–1510.e12

    Article  CAS  PubMed  Google Scholar 

  39. Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455–466.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tierney BT, Tan Y, Yang Z et al (2022) Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research. PLoS Biol 20:e3001556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  42. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vrang N, Madsen AN, Tang-Christensen M et al (2006) PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 291:R367–375

    Article  CAS  PubMed  Google Scholar 

  44. Zeevi D, Korem T, Zmora N et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094

    Article  CAS  PubMed  Google Scholar 

  45. Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26

    Article  CAS  PubMed  Google Scholar 

  46. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zietak M, Kovatcheva-Datchary P, Markiewicz LH et al (2016) Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab 23:1216–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Hild.

Ethics declarations

Interessenkonflikt

B. Hild gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Dagmar Führer-Sakel, Essen

Martin Reincke, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hild, B. Mikrobiom und metabolisches Syndrom – ein Henne-Ei-Problem?. Innere Medizin 64, 649–654 (2023). https://doi.org/10.1007/s00108-023-01531-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-023-01531-z

Schlüsselwörter

Keywords

Navigation