Skip to main content
Log in

Klonale Hämatopoese und solide Neoplasien

Clonal hematopoiesis and solid neoplasms

  • Schwerpunkt: Klonale Hämatopoese
  • Published:
Die Innere Medizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Klonale Hämatopoese (CH) ist ein im Alter häufig auftretender prämaligner Zustand des hämatopoetischen Systems, der mit einem erhöhten kardiovaskulären Risiko und einer erhöhten Gesamtsterblichkeit einhergeht.

Fragestellung

Prävalenz und klinische Implikationen der CH bei PatientInnen mit soliden Neoplasien.

Material und Methoden

Sichtung, Zusammenfassung und Diskussion der Literatur.

Ergebnisse

CH tritt bei etwa 20–30 % der PatientInnen mit soliden Neoplasien auf. CH-Mutationen können bei der molekulargenetischen Analyse von Tumormaterial oder zellfreier DNA aus Plasma als Tumormutationen missinterpretiert werden. CH und insbesondere Mutationen in Genen der DNA-Reparatur-Maschinerie sind unter Chemo‑, Strahlen- und Poly-(Adenosindiphosphat-Ribose)-Polymerase-Inhibitor-Therapie mit einem erhöhten Risiko therapieassoziierter myeloischer Neoplasien (t-MN) assoziiert.

Schlussfolgerung

CH ist ein häufiges Phänomen bei PatientInnen mit soliden Neoplasien und hat aufgrund des t‑MN-Risikos eine hohe klinische Relevanz. Weitere Studien sind notwendig, um die Rolle der CH in diesem Patientenkollektiv besser zu verstehen und um evidenzbasierte Handlungsempfehlungen ableiten zu können.

Abstract

Background

Clonal hematopoiesis (CH) is a premalignant state of the hematopoietic system that frequently occurs in old age and is associated with an elevated cardiovascular risk and higher overall mortality.

Aim

The prevalence and clinical implications of CH in patients with solid neoplasms were examined.

Material and methods

A review, summary and discussion of the recent literature was carried out.

Results

CH occurs in 20–30% of patients with solid neoplasms. In the molecular diagnostics of tumor or cell-free DNA from plasma, CH mutations can be falsely interpreted as tumor mutations. CH and in particular mutations in the genes of the DNA damage repair machinery are associated with a higher risk of therapy-associated myeloid neoplasms (t-MN) following chemotherapy, radiotherapy and poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor therapy.

Conclusion

CH is a frequent phenomenon in patients with solid neoplasms. It has high clinical relevance due to the associated risk of t‑MN. More research is needed for a better understanding of the role of CH in this patient collective and to derive evidence-based recommendations for action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

AML:

Akute myeloische Leukämie

CCUS:

„Clonal cytopenia of undetermined significance“

cfDNA:

„cell-free DNA“ (zellfreie DNA)

CH:

„Clonal hematopoiesis“ (klonale Hämatopoese)

CHIP:

„Clonal hematopoiesis of indeterminate potential“ (klonale Hämatopoese von unbestimmtem Potenzial)

CH-PD:

„Clonal hematopoiesis with presumptive driver mutations“ (klonale Hämatopoese mit vermuteten Treibermutationen)

DDR:

„DNA damage repair“ (DNA-Reparatur)

DTA-CH:

Klonale Hämatopoese mit Nachweis einer Mutation in den Genen DNMT3A, TET2 oder ASXL1

HRD:

Defizienz der homologen Rekombination

MDS:

Myelodysplastisches Syndrom

MGUS:

Monoklonale Gammopathie unklarer Signifikanz

PARP:

Poly-(Adenosindiphosphat-Ribose)-Polymerase

t‑AML:

Therapieassoziierte akute myeloische Leukämie

t‑MDS:

Therapieassoziiertes myelodysplastisches Syndrom

t‑MN:

Therapieassoziierte myeloische Neoplasie

VAF:

Variantenallelfrequenz

Literatur

  1. Acuna-Hidalgo R, Sengul H, Steehouwer M et al (2017) Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet 101:50–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arends CM, Dimitriou S, Stahler A et al (2022) Clonal hematopoiesis is associated with improved survival in patients with metastatic colorectal cancer from the FIRE‑3 trial. Blood 139:1593–1597

    Article  CAS  PubMed  Google Scholar 

  3. Arends CM, Galan-Sousa J, Hoyer K et al (2018) Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 32(9):1908–1919. https://doi.org/10.1038/s41375-018-0047-7

    Article  CAS  PubMed  Google Scholar 

  4. Avagyan S, Henninger JE, Mannherz WP et al (2021) Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374:768–772

    Article  CAS  PubMed  Google Scholar 

  5. Bick AG, Weinstock JS, Nandakumar SK et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boettcher S, Miller PG, Sharma R et al (2019) A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolton KL, Gillis NK, Coombs CC et al (2019) Managing clonal hematopoiesis in patients with solid tumors. J Clin Oncol 37:7–11

    Article  CAS  PubMed  Google Scholar 

  8. Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bolton KL, Zehir A, Ptashkin RN et al (2020) The clinical management of clonal hematopoiesis: creation of a clonal hematopoiesis clinic. Hematol Oncol Clin North Am 34:357–367

    Article  PubMed  Google Scholar 

  10. Bowen D, Groves MJ, Burnett AK et al (2009) TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia 23:203–206

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Wang Q, Yu H et al (2019) Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun 10:5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christen F, Hablesreiter R, Hoyer K et al (2022) Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia 36:1102–1110

    Article  CAS  PubMed  Google Scholar 

  13. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2001) Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 19:1405–1413

    Article  CAS  PubMed  Google Scholar 

  14. Coleman RL, Oza AM, Lorusso D et al (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coombs CC, Gillis NK, Tan X et al (2018) Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays. Clin Cancer Res 24:5918–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:374–382.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damm F, Mylonas E, Cosson A et al (2014) Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 4:1088–1101

    Article  CAS  PubMed  Google Scholar 

  18. Fisher AE, Hochegger H, Takeda S et al (2007) Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol 27:5597–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fraietta JA, Nobles CL, Sammons MA et al (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fuster JJ, Maclauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghoneim HE, Fan Y, Moustaki A et al (2017) De novo epigenetic programs inhibit PD‑1 blockade-mediated T cell rejuvenation. Cell 170:142–157.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gillis NK, Ball M, Zhang Q et al (2017) Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol 18:112–121

    Article  PubMed  Google Scholar 

  24. Goodall J, Mateo J, Yuan W et al (2017) Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 7:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu Y, Ulrich BC, Supplee J et al (2018) False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 24:4437–4443

    Article  CAS  PubMed  Google Scholar 

  27. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jensen K, Konnick EQ, Schweizer MT et al (2021) Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol 7:107–110

    Article  PubMed  Google Scholar 

  30. Kahn JD, Miller PG, Silver AJ et al (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaufman B, Shapira-Frommer R, Schmutzler RK et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244–250

    Article  CAS  PubMed  Google Scholar 

  32. Kwan TT, Oza AM, Tinker AV et al (2021) Preexisting TP53-variant clonal hematopoiesis and risk of secondary myeloid neoplasms in patients with high-grade ovarian cancer treated with rucaparib. JAMA Oncol 7:1772–1781

    Article  PubMed  Google Scholar 

  33. Lee M, Li J, Li J et al (2021) Tet2 inactivation enhances the antitumor activity of tumor-infiltrating lymphocytes. Cancer Res 81:1965–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Sato N, Shimosato Y et al (2022) CHIP-associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Sci 113:1182–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin JE, Khalife-Hachem S, Grinda T et al (2021) Letter to the editor: therapy-related myeloid neoplasms following treatment with PARP inhibitors: new molecular insights. Ann Oncol 32(8):1046–1048. https://doi.org/10.1016/j.annonc.2021.04.015

    Article  CAS  PubMed  Google Scholar 

  36. Mayrhofer M, De Laere B, Whitington T et al (2018) Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med 10:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller PG, Gibson CJ, Mehta A et al (2020) Fitness landscape of clonal hematopoiesis under selective pressure of immune checkpoint blockade. JCO Precis Oncol 4:PO.20.00186. https://doi.org/10.1200/PO.20.00186

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morice PM, Leary A, Dolladille C et al (2021) Myelodysplastic syndrome and acute myeloid leukaemia in patients treated with PARP inhibitors: a safety meta-analysis of randomised controlled trials and a retrospective study of the WHO pharmacovigilance database. Lancet Haematol 8:e122–e134

    Article  PubMed  Google Scholar 

  39. Moss J, Magenheim J, Neiman D et al (2018) Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 9:5068

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pan W, Zhu S, Qu K et al (2017) The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 47:284–297.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Razavi P, Li BT, Brown DN et al (2019) High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 25:1928–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sano S, Oshima K, Wang Y et al (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 Inflammasome. J Am Coll Cardiol 71:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh A, Mencia-Trinchant N, Griffiths EA et al (2022) Mutant PPM1D- and TP53-driven hematopoiesis populates the hematopoietic compartment in response to peptide receptor radionuclide therapy. JCO Precis Oncol 6:e2100309

    Article  PubMed  Google Scholar 

  44. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Swisher EM, Lin KK, Oza AM et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75–87

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111

    Article  PubMed  Google Scholar 

  47. Watson CJ, Papula AL, Poon GYP et al (2020) The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367:1449–1454

    Article  CAS  PubMed  Google Scholar 

  48. Weber-Lassalle K, Ernst C, Reuss A et al (2022) Clonal hematopoiesis-associated gene mutations in a clinical cohort of 448 patients with ovarian cancer. J Natl Cancer Inst 114:565–570

    Article  PubMed  Google Scholar 

  49. Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555

    Article  CAS  PubMed  Google Scholar 

  50. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Damm.

Ethics declarations

Interessenkonflikt

F. Damm gibt an, Honorare und/oder Vergütungen von den Firmen AbbVie, AstraZeneca, Gilead, Incyte, Novartis und Roche erhalten zu haben. C.M. Arends gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Michael Hallek, Köln

Claudia Lengerke, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arends, C.M., Damm, F. Klonale Hämatopoese und solide Neoplasien. Innere Medizin 63, 1133–1140 (2022). https://doi.org/10.1007/s00108-022-01404-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-022-01404-x

Schlüsselwörter

Keywords

Navigation