Skip to main content

Einführung in das Mikrobiom

Introduction to the microbiome

Zusammenfassung

Der menschliche Körper wird von einer Vielzahl von Mikroorganismen besiedelt, die zusammen das humane Mikrobiom bilden. Das Darmmikrobiom macht hiervon den größten Anteil aus. Es stellt eine wichtige Barriere gegen die Ansiedlung von pathogenen Erregern dar, übernimmt wichtige Stoffwechselfunktionen und wirkt regulativ auf das Immunsystem ein. Das macht es essenziell für die Erhaltung der Gesundheit. Die wichtigsten Determinanten der Mikrobiomzusammensetzung in der Allgemeinbevölkerung sind exokrine Pankreasfunktion, Genetik, Ernährung, Alter, Geschlecht und Adipositas. Darüber hinaus werden Veränderungen des Darmmikrobioms mit einer Vielzahl verschiedener, nicht nur gastrointestinaler, Erkrankungen in Verbindung gebracht. Typische Mikrobiomveränderungen beim Kranken sind beispielsweise ein Verlust mikrobieller Diversität und gesundheitsförderlicher Bakterien oder eine Zunahme potenziell pathogener Erreger. Dies kann zu einem proinflammatorischen und instabilen Mikrobiom führen. Der Wissensstand rund um das Thema Mikrobiom nimmt mit rasanter Geschwindigkeit zu, und auf eine Modulation des Mikrobioms zielende Therapien haben inzwischen in unterschiedlichsten Indikationen ihren Weg in die Praxis gefunden. Grundkenntnisse über das Darmmikrobiom sind daher für alle Behandelnden essenziell, um in diesem sich schnell entwickelnden Feld die Übersicht zu behalten und Patientinnen und Patienten adäquat beraten zu können.

Abstract

The human body is colonized by a multitude of different microbes that are collectively referred to as the human microbiome. Gut microbes account for the largest proportion of these. They constitute a barrier against foreign pathogens, carry out important metabolic functions and regulate the immune system, thereby making them essential for the maintenance of health. The most important determinants of the gut microbiome structure in the general population include exocrine pancreatic function, genetics, nutrition, age, sex, and obesity. Changes in the gut microbiome have also been linked to a variety of diseases not limited to gastrointestinal disorders. Typical microbiome changes in disease include a loss of diversity and beneficial bacteria or an increase in opportunistic pathogens. This may result in a proinflammatory and unstable microbiome. Knowledge about the microbiome is rapidly increasing and microbiome modulation therapies have already been implemented in clinical practice. Therefore, basic knowledge about the microbiome is essential for all medical professionals in order for them to advise and treat their patients properly.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. Frost F, Kacprowski T, Rühlemann M et al (2019) Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity. Gastroenterology 156(4):1010–1015. https://doi.org/10.1053/j.gastro.2018.10.047

    CAS  Article  PubMed  Google Scholar 

  2. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    CAS  Article  PubMed Central  Google Scholar 

  3. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143–155. https://doi.org/10.1038/nrmicro.2017.157

    CAS  Article  PubMed  Google Scholar 

  4. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533–2016. https://doi.org/10.1371/journal.pbio.1002533

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38(5):996–1047. https://doi.org/10.1111/1574-6976.12075

    CAS  Article  PubMed  Google Scholar 

  6. Pasolli E, Asnicar F, Manara S et al (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176(3):649–662.e20. https://doi.org/10.1016/j.cell.2019.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Rausch P, Rühlemann M, Hermes BM et al (2019) Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome 7(1):133–2019. https://doi.org/10.1186/s40168-019-0743-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. https://doi.org/10.1038/nature11053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Ahuja M, Schwartz DM, Tandon M et al (2017) Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab 25(3):635–646

    CAS  Article  Google Scholar 

  10. Frost F, Lerch MM (2021) Pankreas und Mikrobiom – Erkenntnisse für die Praxis. Z Gastroenterol 59(06):608–609

    Article  Google Scholar 

  11. Frost F, Weiss FU, Lerch MM (2022) Rolle des Mikrobioms bei Erkrankungen des Pankreas. Internist 63(4):372–378. https://doi.org/10.1007/s00108-022-01276-1

    Article  PubMed  Google Scholar 

  12. Pietzner M, Budde K, Rühlemann M et al (2021) Exocrine pancreatic function modulates plasma metabolites through changes in gut microbiota composition. J Clin Endocrinol Metab 106(5):e2290–e2298

    Article  Google Scholar 

  13. Frost F, Storck LJ, Kacprowski T et al (2019) A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS ONE 14(7):e219489. https://doi.org/10.1371/journal.pone.0219489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Rühlemann MC, Hermes BM, Bang C et al (2021) Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat Genet 53(2):147–155. https://doi.org/10.1038/s41588-020-00747-1

    CAS  Article  PubMed  Google Scholar 

  15. Kurilshikov A, Medina-Gomez C, Bacigalupe R et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53(2):156–165. https://doi.org/10.1038/s41588-020-00763-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Thingholm LB, Rühlemann MC, Koch M et al (2019) Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26(2):252–264.e1. https://doi.org/10.1016/j.chom.2019.07.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87(1):15

    Article  Google Scholar 

  18. Hertel J, Fässler D, Heinken A et al (2022) NMR Metabolomics reveal urine markers of microbiome diversity and identify benzoate metabolism as a mediator between high microbial alpha diversity and metabolic health. Metabolites 12(4):2022. https://doi.org/10.3390/metabo12040308

    CAS  Article  Google Scholar 

  19. Frost F, Kacprowski T, Rühlemann M et al (2021) Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut 70(3):522–530. https://doi.org/10.1136/gutjnl-2020-322753

    CAS  Article  PubMed  Google Scholar 

  20. Chang JY, Antonopoulos DA, Kalra A et al (2008) Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diarrhea. J Infect Dis 197(3):435–438

    Article  Google Scholar 

  21. Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211. https://doi.org/10.1136/gut.2005.073817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Boland K, Turpin W, Mohammadi A et al (2017) Microbiome composition is altered in patients with IBD independent of endoscopic activity. Gastroenterology 152(5):991

    Article  Google Scholar 

  23. Frost F, Weiss FU, Sendler M et al (2020) The gut microbiome in patients with chronic pancreatitis is characterized by significant dysbiosis and overgrowth by opportunistic pathogens. Clin Transl Gastroenterol 11(9):e232

    Article  Google Scholar 

  24. Frost F, Kacprowski T, Rühlemann M et al (2021) Carrying asymptomatic gallstones is not associated with changes in intestinal microbiota composition and diversity but cholecystectomy with significant dysbiosis. Sci Rep 11(1):6677. https://doi.org/10.1038/s41598-021-86247-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064

    CAS  Article  Google Scholar 

  26. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165

    CAS  Article  PubMed  Google Scholar 

  27. Parada Venegas D, de La Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Miao W, Wu X, Wang K et al (2016) Sodium butyrate promotes reassembly of tight junctions in Caco‑2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2. Int J Mol Sci. https://doi.org/10.3390/ijms17101696

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cummings JH, Pomare EW, Branch WJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227

    CAS  Article  Google Scholar 

  30. Cherrington CA, Hinton M, Pearson GR et al (1991) Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J Appl Bacteriol 70(2):161–165

    CAS  Article  Google Scholar 

  31. Ménard S, Candalh C, Bambou JC et al (2004) Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53(6):821–828

    Article  Google Scholar 

  32. Ren C, Zhang Q, de Haan BJ et al (2020) Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are Toll like receptor 2 and protein kinase C dependent. Food Funct 11(2):1230–1234

    Article  Google Scholar 

  33. Rinninella E, Raoul P, Cintoni M et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. https://doi.org/10.3390/microorganisms7010014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Frost.

Ethics declarations

Interessenkonflikt

F. Frost gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Fabian Frost, Greifswald

Markus M. Lerch, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frost, F. Einführung in das Mikrobiom. Innere Medizin 63, 1015–1021 (2022). https://doi.org/10.1007/s00108-022-01395-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-022-01395-9

Schlüsselwörter

  • Dysbiose
  • Pankreas
  • Fettleber
  • Diabetes mellitus
  • Mikrobiomstabilität

Keywords

  • Dysbiosis
  • Pancreas
  • Fatty liver
  • Diabetes mellitus
  • Microbiome stability