Skip to main content
Log in

Renale Denervation

Wirklich eine Alternative zu Blutdrucksenkern?

Renal denervation

Really an alternative to reducing blood pressure?

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Seit der Veröffentlichung der aktuellen Leitlinien im Jahr 2018 wurden insgesamt 5 Sham-kontrollierte Studien mit hoher Qualität zur renalen Denervation durchgeführt und die Ergebnisse veröffentlicht. Diese 5 Studien belegen die Wirksamkeit und Sicherheit der renalen Denervation, die den Kenntnissen der Clinical Consensus Conference entsprechen, eindeutig. Somit ist eine Anpassung des Stellenwerts der renalen Denervation in der leitliniengerechten Blutdrucktherapie dringend erforderlich. Aus diesem Grund wurde das Positionspapier der Arbeitsgruppe der europäischen Bluthochdruckliga zum aktuellen Stand der renalen Denervation erarbeitet. Es kann mit einer zeitnahen Zulassung dieses Verfahrens gerechnet werden. In Deutschland gibt es eine DRG für die renale Denervation, die wegen der fehlerhaften Symplicity-3-Studie ausgesetzt wurde. Durch einen strukturierten Prozess der Einführung der renalen Denervation in die Praxis soll diese DRG wiederbelebt werden. Es wird dann gemeinsame Aufgabe der behandelnden Ärzte und der zertifizierten Zentren sein, hierfür geeignete Patienten zu identifizieren. Die Bluthochdrucktherapie wird auch in Zukunft aus den 3 Säulen Lifestyle-Maßnahmen, medikamentöse Therapie und interventionelle Therapie bestehen. Dies sollte nicht kompetitiv (Was ist besser?), sondern alternativ (Patientenpräferenz) und additiv (Blutdruckkontrolle ist das Ziel) betrachtet werden. Es ist Aufgabe der behandelten Ärzte, dem Patienten das ideale Therapiekonzept anzubieten. Die renale Denervation wird die medikamentöse Therapie dabei nicht ersetzen können, aber zur Reduktion der Medikamentenlast führen und die Adhärenz der Patienten erhöhen. Sie wird in der modernen Bluthochdrucktherapie auch bei speziellen Patientengruppen zunehmend an Bedeutung gewinnen.

Abstract

Since the current guidelines were published in 2018, a total of 5 sham-controlled high-quality studies evaluating renal denervation have been conducted and the results were published. These five studies clearly confirmed the efficacy and safety of renal denervation, which correspond to the knowledge of the Clinical Consensus Conference. Thus, an update of the guidelines for the treatment of arterial hypertension regarding the clinical significance of renal denervation is urgently necessary. For this reason, the position paper of the working group of the European Society of Hypertension on the current state of renal denervation was reviewed. An approval of this procedure can soon be expected. In Germany there is a diagnosis-related group (DRG) for the reimbursement of renal denervation, which was suspended due to the erroneous Symplicity 3 study. This DRG should be revived in practice by a structured process of the implementation of renal denervation. It will then be a joint task of treating physicians and specialists in certified centers to identify eligible patients. In the future, antihypertensive treatment will consist of three pillars: lifestyle measures, pharmacotherapy and interventional treatment. These three treatment options should not be regarded as competitive (which is better) but alternative (patient preference) and additive (the aim is blood pressure control). It is the task of the treating physician to provide the patient with the ideal treatment concept. Clearly, renal denervation will not replace antihypertensive pharmacotherapy; however, it can lead to a reduction of the drug burden and increase of patient adherence to medication. It represents an option of modern antihypertensive treatment and will also become increasingly more important in special patient groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L et al (2017) Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317(2):165–182

    PubMed  Google Scholar 

  2. Mills KT, Stefanescu A, He J (2020) The global epidemiology of hypertension. Nat Rev Nephrol 16(4):223–237

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    PubMed  Google Scholar 

  4. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104

    PubMed  Google Scholar 

  5. Blood Pressure Lowering Treatment Trialists’ Collaboration (2021) Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397(10285):1625–1636

    Google Scholar 

  6. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J et al (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387(10022):957–967

    PubMed  Google Scholar 

  7. Bosch A, Schmieder RE (2021) Novel approaches to management of hypertension. Curr Opin Nephrol Hypertens 30(1):54–62

    CAS  PubMed  Google Scholar 

  8. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of cardiology and the European society of hypertension: the task force for the management of arterial hypertension of the European society of cardiology and the European society of hypertension. J Hypertens 36(10):1953–2041

    CAS  PubMed  Google Scholar 

  9. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J et al (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391(10137):2335–2345

    PubMed  Google Scholar 

  10. Schlaich MP (2016) What we need to know about renal nerve ablation for treatment of hypertension and other states of sympathetic overactivity. Am J Physiol Renal Physiol 311(6):F1267–70

    CAS  PubMed  Google Scholar 

  11. Campese VM, Kogosov E, Koss M (1995) Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis 26(5):861–865

    CAS  PubMed  Google Scholar 

  12. DiBona GF, Esler M (2010) Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 298(2):R245–53

    CAS  PubMed  Google Scholar 

  13. Schmieder RE (2020) Renal denervation: where do we stand and what is the relevance to the nephrologist? Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfaa237

    Article  PubMed  Google Scholar 

  14. Osborn JW, Tyshynsky R, Vulchanova L (2021) Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol 83:429–450

    CAS  PubMed  Google Scholar 

  15. Striepe K, Schmieder R (2018) Renaissance der Nierennervenablation? NEPHRO-NEWS. Jahrgang 20, Ausgabe 4/18, S 1

  16. Grassi G, Seravalle G, Brambilla G, Trabattoni D, Cuspidi C, Corso R et al (2015) Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 65(6):1209–1216

    CAS  PubMed  Google Scholar 

  17. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW et al (2013) Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61(2):457–464

    CAS  PubMed  Google Scholar 

  18. Esler M (2014) Illusions of truths in the symplicity HTN‑3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens 8(8):593–598

    PubMed  Google Scholar 

  19. Schmieder RE, Mahfoud F, Mancia G, Azizi M, Böhm M, Dimitriadis K et al (2021) European society of hypertension position paper on renal denervation 2021. J Hypertens 39(9):1733–1741

    CAS  PubMed  Google Scholar 

  20. Pappaccogli M, Covella M, Berra E, Fulcheri C, Di Monaco S, Perlo E et al (2018) Effectiveness of renal denervation in resistant hypertension: a meta-analysis of 11 controlled studies. High Blood Press Cardiovasc Prev 25(2):167–176

    CAS  PubMed  Google Scholar 

  21. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    CAS  PubMed  Google Scholar 

  22. Mahfoud F, Schmieder RE, Azizi M, Pathak A, Sievert H, Tsioufis C et al (2017) Proceedings from the 2nd European clinical consensus conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur Heart J 38(44):3272–3281

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahfoud F, Azizi M, Ewen S, Pathak A, Ukena C, Blankestijn PJ et al (2020) Proceedings from the 3rd European clinical consensus conference for clinical trials in device-based hypertension therapies. Eur Heart J 41(16):1588–1599

    PubMed  PubMed Central  Google Scholar 

  24. Sardar P, Bhatt DL, Kirtane AJ, Kennedy KF, Chatterjee S, Giri J et al (2019) Sham-controlled randomized trials of catheter-based renal denervation in patients with hypertension. J Am Coll Cardiol 73(13):1633–1642

    PubMed  Google Scholar 

  25. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M et al (2015) Predictors of blood pressure response in the SYMPLICITY HTN‑3 trial. Eur Heart J 36(4):219–227

    PubMed  Google Scholar 

  26. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA et al (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390(10108):2160–2170

    PubMed  Google Scholar 

  27. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S et al (2018) Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6‑month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391(10137):2346–2355

    PubMed  Google Scholar 

  28. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE et al (2020) Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 395(10234):1444–1451

    PubMed  Google Scholar 

  29. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T et al (2021) Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 397(10293):2476–2486

    CAS  PubMed  Google Scholar 

  30. Mahfoud F, Renkin J, Sievert H, Bertog S, Ewen S, Böhm M et al (2020) Alcohol-mediated renal denervation using the peregrine system infusion catheter for treatment of hypertension. JACC Cardiovasc Interv 13(4):471–484

    PubMed  Google Scholar 

  31. Mahfoud F, Mancia G, Schmieder R, Narkiewicz K, Ruilope L, Schlaich M et al (2020) Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol 75(23):2879–2888

    PubMed  Google Scholar 

  32. Weber MA, Kirtane AJ, Weir MR, Radhakrishnan J, Das T, Berk M et al (2020) The REDUCE HTN: REINFORCE: randomized, sham-controlled trial of bipolar radiofrequency renal denervation for the treatment of hypertension. JACC Cardiovasc Interv 13(4):461–470

    PubMed  Google Scholar 

  33. Kario K, Yokoi Y, Okamura K, Fujihara M, Ogoyama Y, Yamamoto E et al (2021) Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. https://doi.org/10.1038/s41440-021-00754-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanders MF, Reitsma JB, Morpey M, Gremmels H, Bots ML, Pisano A et al (2017) Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transplant 32(9):1440–1447

    CAS  PubMed  Google Scholar 

  35. Azizi M, Daemen J, Lobo MD, Mahfoud F, Sharp ASP, Schmieder RE et al (2020) 12-month results from the unblinded phase of the RADIANCE-HTN SOLO trial of ultrasound renal denervation. JACC Cardiovasc Interv 13(24):2922–2933

    PubMed  Google Scholar 

  36. Townsend RR, Walton A, Hettrick DA, Hickey GL, Weil J, Sharp ASP et al (2020) Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention 16(1):89–96

    PubMed  Google Scholar 

  37. Schmid A, Schmieder R, Lell M, Janka R, Veelken R, Schmieder RE et al (2016) Mid-term vascular safety of renal denervation assessed by follow-up MR imaging. Cardiovasc Intervent Radiol 39(3):426–432

    PubMed  Google Scholar 

  38. Schmieder RE, Högerl K, Jung S, Bramlage P, Veelken R, Ott C (2019) Patient preference for therapies in hypertension: a cross-sectional survey of German patients. Clin Res Cardiol 108(12):1331–1342

    PubMed  Google Scholar 

  39. Mahfoud F, Böhm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L et al (2019) Effects of renal denervation on kidney function and long-term outcomes: 3‑year follow-up from the global SYMPLICITY registry. Eur Heart J 40(42):3474–3482

    PubMed  PubMed Central  Google Scholar 

  40. Bruno RM, Taddei S, Borghi C, Colivicchi F, Desideri G, Grassi G et al (2020) Italian society of arterial hypertension (SIIA) position paper on the role of renal denervation in the management of the difficult-to-treat hypertensive patient. High Blood Press Cardiovasc Prev 27(2):109–117

    PubMed  Google Scholar 

  41. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE et al (1996) Blood pressure and end-stage renal disease in men. N Engl J Med 334(1):13–18

    CAS  PubMed  Google Scholar 

  42. Schneider MP, Hilgers KF, Schmid M, Hübner S, Nadal J, Seitz D et al (2018) Blood pressure control in chronic kidney disease: a cross-sectional analysis from the German chronic kidney disease (GCKD) study. PLoS ONE 13(8):e202604

    PubMed  PubMed Central  Google Scholar 

  43. Converse RL Jr., Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F et al (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327(27):1912–1918

    PubMed  Google Scholar 

  44. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K et al (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106(15):1974–1979

    PubMed  Google Scholar 

  45. Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15(3):524–537

    PubMed  Google Scholar 

  46. Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S et al (2014) Improvement of albuminuria after renal denervation. Int J Cardiol 173(2):311–315

    PubMed  Google Scholar 

  47. Hering D, Marusic P, Duval J, Sata Y, Head GA, Denton KM et al (2017) Effect of renal denervation on kidney function in patients with chronic kidney disease. Int J Cardiol 232:93–97

    PubMed  Google Scholar 

  48. Ott C, Mahfoud F, Mancia G, Narkiewicz K, Ruilope LM, Fahy M et al (2021) Renal denervation in patients with versus without chronic kidney disease: results from the global SYMPLICITY registry with follow-up data of 3 years. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfab154

    Article  Google Scholar 

  49. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T et al (2015) Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens 33(6):1261–1266

    CAS  PubMed  Google Scholar 

  50. Kiuchi MG, Chen S (2016) Improvement of renal function after renal sympathetic denervation in CKD patients with controlled vs. uncontrolled hypertension. Int J Cardiol 223:494–496

    PubMed  Google Scholar 

  51. Lauder L, Azizi M, Kirtane AJ, Böhm M, Mahfoud F (2020) Device-based therapies for arterial hypertension. Nat Rev Cardiol 17(10):614–628

    PubMed  Google Scholar 

  52. Böhm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C et al (2019) Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J 40(9):743–751

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schmieder.

Ethics declarations

Interessenkonflikt

R. Schmieder gibt an, Vertrags‑/Beraterhonorar erhalten zu haben von: Ablative Solutions, Medtronic and Recor. Zudem wurde Forschungsunterstützung von Ablative Solution, Medtronic and Recor an die Universitätsklinik Erlangen geleistet. K. Striepe und M. Schiffer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

M. Wehling, Mannheim

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striepe, K., Schiffer, M. & Schmieder, R. Renale Denervation. Internist 63, 330–340 (2022). https://doi.org/10.1007/s00108-021-01242-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-021-01242-3

Schlüsselwörter

Keywords

Navigation