Skip to main content
Log in

Niereninsuffizienz im Kontext der kardiopulmorenalen Pathophysiologie

Renal insufficiency in the context of cardio-pulmonary-renal pathophysiology

  • Schwerpunkt: Kardio-pulmo-renale Medizin
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Herzinsuffizienz und Niereninsuffizienz sowie pulmonale Hypertonie sind als kardiorenales oder kardiopulmorenales Syndrom pathophysiologisch eng miteinander verzahnt. Aufgrund der häufigen Hospitalisierung der hiervon betroffenen Patienten kommt diesem Syndrom eine hohe medizinische, aber auch gesundheitsökonomische Relevanz zu. Neben der Blockade des Renin-Angiotensin-Aldosteron-Systems stehen mit den Mineralokortikoidrezeptorantagonisten, Angiotensinrezeptor-Neprilysin-Inhibitoren sowie Natrium-Glukose-Kotransporter-2(SGLT-2)-Inhibitoren multimodale Therapiemöglichkeiten zur Verfügung. Die Kenntnis der pathophysiologischen Grundlagen und der therapeutischen Optionen ist für eine optimierte medizinische Betreuung genauso notwendig wie eine patientenorientierte, transdisziplinäre und sektorenübergreifende Versorgung.

Abstract

Heart failure and renal insufficiency as well as pulmonary hypertension are pathophysiologically closely associated as a cardio-renal or cardio-pulmonary-renal syndrome. Due to the frequent hospitalization of patients affected by this syndrome, it is of high medical and also health economic relevance. Besides the inhibition of the renin-angiotensin-aldosterone system (RAAS), multimodal treatment options are available with mineralocorticoid receptor antagonists, angiotensin receptor-neprilysin inhibitors and sodium-glucose transporter 2 (SGLT-2) inhibitors. Profound knowledge of the pathophysiology and the therapeutic options is as necessary for an optimized medical care as patient-oriented, transdisciplinary and cross-sectoral care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Matsushita K et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081. https://doi.org/10.1016/S0140-6736(10)60674-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anavekar NS et al (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 351:1285–1295

    Article  CAS  PubMed  Google Scholar 

  3. Gansevoort RT et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382:339–352. https://doi.org/10.1016/S0140-6736(13)60595-4

    Article  PubMed  Google Scholar 

  4. Lala A et al (2015) Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and Cardiorenal rescue study in acute decompensated heart failure (CARESS-HF). Circ Heart Fail 8:741–748. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957

    Article  PubMed  PubMed Central  Google Scholar 

  5. Felker GM et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805. https://doi.org/10.1056/NEJMoa1005419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Damman K et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  7. Mullens W et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed  PubMed Central  Google Scholar 

  8. Navaneethan SD et al (2014) Presence and outcomes of kidney disease in patients with pulmonary hypertension. Clin J Am Soc Nephrol 9:855–863. https://doi.org/10.2215/CJN.10191013

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tang M et al (2018) Pulmonary hypertension, mortality, and cardiovascular disease in CKD and ESRD patients: a systematic review and meta-analysis. Am J Kidney Dis 72:75–83. https://doi.org/10.1053/j.ajkd.2017.11.018

    Article  PubMed  Google Scholar 

  10. Edmonston DL et al (2020) Pulmonary hypertension subtypes and mortality in CKD. Am J Kidney Dis 75:713–724. https://doi.org/10.1053/j.ajkd.2019.08.027

    Article  PubMed  Google Scholar 

  11. Frohlich H et al (2015) Peritoneal ultrafiltration in end-stage chronic heart failure. Clin Kidney J 8:219–225. https://doi.org/10.1093/ckj/sfv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grossekettler L et al (2020) Benefits of peritoneal ultrafiltration in HFpEF and HFrEF patients. BMC Nephrol 21:179. https://doi.org/10.1186/s12882-020-01777-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grossekettler L et al (2019) Peritoneal dialysis as therapeutic option in heart failure patients. ESC Heart Fail 6:271–279. https://doi.org/10.1002/ehf2.12411

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schwenger V et al (2014) Dialysis and ultrafiltration therapy in patients with cardio-renal syndrome: recommendations of the working group „heart-kidney“ of the German cardiac society and the German society of nephrology. Dtsch Med Wochenschr 139:e1–8. https://doi.org/10.1055/s-0033-1360037

    Article  CAS  PubMed  Google Scholar 

  15. Alhaj E et al (2013) Uremic cardiomyopathy: an underdiagnosed disease. Congest Heart Fail 19:E40–45. https://doi.org/10.1111/chf.12030

    Article  PubMed  Google Scholar 

  16. Ridker PM et al (2021) IL‑6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397:2060–2069. https://doi.org/10.1016/S0140-6736(21)00520-1

    Article  CAS  PubMed  Google Scholar 

  17. Everett BM et al (2020) Inhibition of interleukin-1beta and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J Am Coll Cardiol 76:1660–1670. https://doi.org/10.1016/j.jacc.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  18. Fox BM et al (2019) Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney Int 95:590–610. https://doi.org/10.1016/j.kint.2018.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Go AS et al (2018) Acute kidney injury and risk of heart failure and atherosclerotic events. Clin J Am Soc Nephrol 13:833–841. https://doi.org/10.2215/CJN.12591117

    Article  PubMed  PubMed Central  Google Scholar 

  20. James MT et al (2013) Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv 6:37–43. https://doi.org/10.1161/CIRCINTERVENTIONS.112.974493

    Article  PubMed  Google Scholar 

  21. Navaneethan SD et al (2011) Serum bicarbonate and mortality in stage 3 and stage 4 chronic kidney disease. Clin J Am Soc Nephrol 6:2395–2402. https://doi.org/10.2215/CJN.03730411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Epstein M et al (2015) Evaluation of the treatment gap between clinical guidelines and the utilization of renin-angiotensin-aldosterone system inhibitors. Am J Manag Care 21:S212–220

    PubMed  Google Scholar 

  23. Qiao Y et al (2020) Association between renin-angiotensin system blockade discontinuation and all-cause mortality among persons with low estimated glomerular filtration rate. JAMA Intern Med 180:718–726. https://doi.org/10.1001/jamainternmed.2020.0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edner M, Benson L, Dahlstrom U, Lund LH (2015) Association between renin-angiotensin system antagonist use and mortality in heart failure with severe renal insufficiency: a prospective propensity score-matched cohort study. Eur Heart J 36:2318–2326. https://doi.org/10.1093/eurheartj/ehv268

    Article  CAS  PubMed  Google Scholar 

  25. Badve SV et al (2011) Effects of beta-adrenergic antagonists in patients with chronic kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 58:1152–1161. https://doi.org/10.1016/j.jacc.2011.04.041

    Article  CAS  PubMed  Google Scholar 

  26. Fu EL et al (2021) Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J Am Soc Nephrol 32:424–435. https://doi.org/10.1681/ASN.2020050682

    Article  CAS  PubMed  Google Scholar 

  27. Zannad F et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21. https://doi.org/10.1056/NEJMoa1009492

    Article  CAS  PubMed  Google Scholar 

  28. Vardeny O et al (2012) Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: insights from RALES (randomized aldactone evaluation study). J Am Coll Cardiol 60:2082–2089

    Article  CAS  PubMed  Google Scholar 

  29. Bakris GL et al (2020) Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383:2219–2229. https://doi.org/10.1056/NEJMoa2025845

    Article  CAS  PubMed  Google Scholar 

  30. Filippatos G et al (2021) Finerenone reduces onset of atrial fibrillation in patients with chronic kidney disease and type 2 diabetes. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2021.04.079

    Article  PubMed  Google Scholar 

  31. Pitt B (2021) New Engl J Med 2021, Aug 28, Online ahead of print

  32. Agarwal R et al (2019) Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 394:1540–1550. https://doi.org/10.1016/S0140-6736(19)32135-X

    Article  CAS  PubMed  Google Scholar 

  33. Spannella F, Giulietti F, Filipponi A, Sarzani R (2020) Effect of sacubitril/valsartan on renal function: a systematic review and meta-analysis of randomized controlled trials. ESC Heart Fail. https://doi.org/10.1002/ehf2.13002

    Article  PubMed  PubMed Central  Google Scholar 

  34. McMurray JJ et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  35. Velazquez EJ et al (2019) Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med 380:539–548. https://doi.org/10.1056/NEJMoa1812851

    Article  CAS  PubMed  Google Scholar 

  36. Solomon SD et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  37. Haynes R et al (2018) Effects of sacubitril/valsartan versus Irbesartan in patients with chronic kidney disease. Circulation 138:1505–1514. https://doi.org/10.1161/CIRCULATIONAHA.118.034818

    Article  CAS  PubMed  Google Scholar 

  38. Damman K et al (2018) Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail 6:489–498. https://doi.org/10.1016/j.jchf.2018.02.004

    Article  PubMed  Google Scholar 

  39. Packer M et al (2021) Influence of neprilysin inhibition on the efficacy and safety of empagliflozin in patients with chronic heart failure and a reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J 42:671–680. https://doi.org/10.1093/eurheartj/ehaa968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwenger V, Remppis BA (2018) Nephrologische Therapie der schweren Herzinsuffizienz. Nephrologe 13:104–110

    Article  Google Scholar 

  41. Ellison DH, Felker GM (2017) Diuretic treatment in heart failure. N Engl J Med 377:1964–1975. https://doi.org/10.1056/NEJMra1703100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olde Engberink RH et al (2015) Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension 65:1033–1040. https://doi.org/10.1161/HYPERTENSIONAHA.114.05122

    Article  CAS  PubMed  Google Scholar 

  43. Roush GC, Ernst ME, Kostis JB, Tandon S, Sica DA (2015) Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension 65:1041–1046. https://doi.org/10.1161/HYPERTENSIONAHA.114.05021

    Article  CAS  PubMed  Google Scholar 

  44. Cox ZL, Hung R, Lenihan DJ, Testani JM (2020) Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail 8:157–168. https://doi.org/10.1016/j.jchf.2019.09.012

    Article  PubMed  Google Scholar 

  45. Anker SD et al (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448. https://doi.org/10.1056/NEJMoa0908355

    Article  CAS  PubMed  Google Scholar 

  46. Ponikowski P et al (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J 36:657–668. https://doi.org/10.1093/eurheartj/ehu385

    Article  CAS  PubMed  Google Scholar 

  47. Ponikowski P et al (2020) Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396:1895–1904. https://doi.org/10.1016/S0140-6736(20)32339-4

    Article  CAS  PubMed  Google Scholar 

  48. Macdougall IC et al (2019) Intravenous iron in patients undergoing maintenance hemodialysis. N Engl J Med 380:447–458. https://doi.org/10.1056/NEJMoa1810742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedat Schwenger.

Ethics declarations

Interessenkonflikt

V. Schwenger, I.E. Emrich, F. Mahfoud, J. Latus und A. Remppis geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

B. Andrew Remppis, Bad Bevensen

Vedat Schwenger, Stuttgart

Claus F. Vogelmeier, Marburg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwenger, V., Emrich, I.E., Mahfoud, F. et al. Niereninsuffizienz im Kontext der kardiopulmorenalen Pathophysiologie. Internist 62, 1153–1165 (2021). https://doi.org/10.1007/s00108-021-01170-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-021-01170-2

Schlüsselwörter

Keywords

Navigation