Skip to main content

Chronisch-obstruktive Lungenerkrankung, schlafbezogene Atemstörungen und Hypoventilation – Einflüsse auf das kardiorenale System

Chronic obstructive pulmonary disease, sleep-disordered breathing and hypoventilation—Influence on the cardiorenal system

Zusammenfassung

Aufgrund der Interaktion zwischen den Organsystemen und wegen gemeinsamer Risikofaktoren leiden Patienten mit Lungenerkrankungen häufig zusätzlich an extrapulmonalen Erkrankungen. Im Rahmen dieses Beitrags sollen daher die Auswirkungen ausgewählter Erkrankungen des respiratorischen Systems auf das Herz-Kreislauf-System und die Niere genauer betrachtet werden. Eine fortgeschrittene chronisch-obstruktive Lungenerkrankung (COPD) führt häufig zu einer prognostisch ungünstigen Druckerhöhung im Lungenkreislauf. Therapeutisch steht diesbezüglich die Therapie der zugrunde liegenden Lungenerkrankung im Vordergrund, die gezielte Therapie der pulmonalen Hypertonie sollte nur gemäß der invasiven Diagnostik und individualisiert erfolgen. Bislang völlig unbeachtet bleibt, dass es erhebliche Überschneidungen von COPD und Herzinsuffizienz mit erhaltener Ejektionsfraktion gibt, was beim diagnostischen Prozedere berücksichtigt werden sollte. Die obstruktive Schlafapnoe (OSA) wirkt sich auf vielfältige Weise ungünstig auf das Herz-Kreislauf-System aus und ist ein unabhängiger Risikofaktor für kardiovaskuläre Erkrankungen. „Continuous positive airway pressure“ stellt die etablierte Therapie der OSA dar und verbessert Tagesmüdigkeit und Lebensqualität, ein Effekt auf kardiovaskuläre Ereignisse konnte in randomisierten Studien insbesondere für asymptomatische Patienten bislang allerdings nicht nachgewiesen werden. Patienten mit chronischer Hyperkapnie leiden häufig unter peripheren Ödemen. Pathophysiologisch sind hier neben der pulmonalen Vasokonstriktion auch direkte Auswirkungen der Hyperkapnie auf die renale Durchblutung von Bedeutung. Die Rekompensation dieser Patienten erfordert neben der Gabe von Diuretika immer auch die Korrektur der Hyperkapnie mittels nichtinvasiver Beatmungstherapie.

Abstract

Comorbidities are frequently observed in patients suffering from pulmonary diseases due to shared risk factors and intricate interactions between various organ systems. This article aims to characterize the effects of selected diseases of the respiratory system on the cardiovascular system and kidneys. Advanced chronic obstructive pulmonary disease (COPD) often leads to a prognostically unfavorable increased pressure in the pulmonary circulation. In this respect treatment of these patients is primarily aimed at the underlying pulmonary disease and targeted treatment of the pulmonary hypertension should only be carried out according to invasive diagnostics and in an individualized manner. So far, the fact that there is a substantial overlap between COPD and heart failure with preserved ejection fraction has been completely ignored, which should be considered in the diagnostic procedure. Obstructive sleep apnea (OSA) has several unfavorable effects on the cardiovascular system and has been identified as an independent risk factor for cardiovascular diseases. The established treatment of OSA with continuous positive airway pressure (CPAP) has been shown to improve daytime sleepiness and the quality of life; however, an effect of CPAP on the occurrence of cardiovascular events, especially in asymptomatic patients, has so far not been demonstrated in randomized trials. Peripheral edema is frequently observed in patients suffering from chronic hypercapnia, which can be explained by several pathophysiological mechanisms, including pulmonary vasoconstriction and a direct effect of the hypercapnia on renal blood flow. Apart from the administration of diuretics, recompensation of such patients always requires treatment of the hypercapnia by noninvasive ventilation.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Almeneessier AS, Nashwan SZ, Al-Shamiri MQ et al (2017) The prevalence of pulmonary hypertension in patients with obesity hypoventilation syndrome: a prospective observational study. J Thorac Dis 9:779–788. https://doi.org/10.21037/jtd.2017.03.21

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Anand IS, Chandrashekhar Y, Ferrari R et al (1992) Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation 86:12–21

    CAS  Article  Google Scholar 

  3. 3.

    Badr MS, Javaheri S (2019) Central sleep apnea: a brief review. Curr Pulmonol Rep 8:14–21. https://doi.org/10.1007/s13665-019-0221-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Barbé F, Durán-Cantolla J, Sánchez-de-la-Torre M et al (2012) Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA 307:2161–2168. https://doi.org/10.1001/jama.2012.4366

    Article  PubMed  Google Scholar 

  5. 5.

    Baudouin SV (1997) Oedema and cor pulmonale revisited. Thorax 52:401–402. https://doi.org/10.1136/thx.52.5.401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chaouat A, Bugnet A‑S, Kadaoui N et al (2005) Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:189–194. https://doi.org/10.1164/rccm.200401-006OC

    Article  PubMed  Google Scholar 

  7. 7.

    Cowie MR, Woehrle H, Wegscheider K et al (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105. https://doi.org/10.1056/NEJMoa1506459

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cuttica MJ, Kalhan R, Shlobin OA et al (2010) Categorization and impact of pulmonary hypertension in patients with advanced COPD. Respir Med 104:1877–1882. https://doi.org/10.1016/j.rmed.2010.05.009

    Article  PubMed  Google Scholar 

  9. 9.

    Dodds S, Williams LJ, Roguski A et al (2020) Mortality and morbidity in obstructive sleep apnoea-hypopnoea syndrome: results from a 30-year prospective cohort study. ERJ Open Res 6:57–2020. https://doi.org/10.1183/23120541.00057-2020

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dreher M, Kabitz H‑J (2012) Impact of obesity on exercise performance and pulmonary rehabilitation. Respirology 17:899–907. https://doi.org/10.1111/j.1440-1843.2012.02151.x

    Article  PubMed  Google Scholar 

  11. 11.

    Eulenburg C, Wegscheider K, Woehrle H et al (2016) Mechanisms underlying increased mortality risk in patients with heart failure and reduced ejection fraction randomly assigned to adaptive servoventilation in the SERVE-HF study: results of a secondary multistate modelling analysis. Lancet Respir Med 4:873–881. https://doi.org/10.1016/S2213-2600(16)30244-2

    Article  PubMed  Google Scholar 

  12. 12.

    Galiè N, Humbert M, Vachiery J‑L et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37:67–119. https://doi.org/10.1093/eurheartj/ehv317

    Article  PubMed  Google Scholar 

  13. 13.

    Gami AS, Olson EJ, Shen WK et al (2013) Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol 62:610–616. https://doi.org/10.1016/j.jacc.2013.04.080

    Article  PubMed  Google Scholar 

  14. 14.

    Giles TL, Lasserson TJ, Smith BJ et al (2006) Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev 1:CD1106. https://doi.org/10.1002/14651858.CD001106.pub2

    Article  Google Scholar 

  15. 15.

    Gredic M, Blanco I, Kovacs G et al (2021) Pulmonary hypertension in chronic obstructive pulmonary disease. Br J Pharmacol 178:132–151. https://doi.org/10.1111/bph.14979

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Javaheri S, Shukla R, Zeigler H, Wexler L (2007) Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol 49:2028–2034. https://doi.org/10.1016/j.jacc.2007.01.084

    Article  PubMed  Google Scholar 

  17. 17.

    Javaheri SS, Barbe F, Campos-Rodriguez F et al (2017) Sleep apnea: types, mechanisms, and clinical cardiovascular consequence. J Am Coll Cardiol 69:841–858. https://doi.org/10.1016/j.jacc.2016.11.069

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kasai T, Kasagi S, Maeno K et al (2013) Adaptive servo-ventilation in cardiac function and neurohormonal status in patients with heart failure and central sleep apnea nonresponsive to continuous positive airway pressure. JACC Heart Fail 1:58–63. https://doi.org/10.1016/j.jchf.2012.11.002

    Article  PubMed  Google Scholar 

  19. 19.

    Kessler R, Faller M, Fourgaut G et al (1999) Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159:158–164. https://doi.org/10.1164/ajrccm.159.1.9803117

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Lange TJ, Baron M, Seiler I et al (2014) Outcome of patients with severe ph due to lung disease with and without targeted therapy. Cardiovasc Ther 32:202–208. https://doi.org/10.1111/1755-5922.12084

    Article  PubMed  Google Scholar 

  21. 21.

    Manthous CA, Mokhlesi B (2016) Avoiding management errors in patients with obesity hypoventilation syndrome. Ann Am Thorac Soc 13(1):109–114. https://doi.org/10.1513/AnnalsATS.201508-562OT

    Article  PubMed  Google Scholar 

  22. 22.

    Masa JF, Mokhlesi B, Benítez I et al (2020) Echocardiographic changes with positive airway pressure therapy in obesity hypoventilation syndrome long-term pickwick randomized controlled clinical trial. Am J Respir Crit Care Med 201:586–597. https://doi.org/10.1164/rccm.201906-1122OC

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Nathan SD, Barbera JA, Gaine SP et al (2020) Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J. https://doi.org/10.1183/13993003.01914-2018

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Oldenburg O, Arzt M, Bitter T et al (2015) Positionspapier „Schlafmedizin in der Kardiologie“. Kardiologe 9:140–158. https://doi.org/10.1007/s12181-015-0654-8

    Article  Google Scholar 

  25. 25.

    Olschewski H (2021) The challenge to decide between pulmonary hypertension due to chronic lung disease and PAH with chronic lung disease. Diagnostics 11:311. https://doi.org/10.3390/diagnostics11020311

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Olschewski H, Behr J, Bremer H et al (2016) Pulmonale Hypertonie bei Lungenkrankheiten

    Google Scholar 

  27. 27.

    Peker Y, Glantz H, Eulenburg C et al (2016) Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea: the RICCADSA randomized controlled trial. Am J Respir Crit Care Med 194:613–620. https://doi.org/10.1164/rccm.201601-0088OC

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  Google Scholar 

  29. 29.

    Raurich J‑M, Rialp G, Ibáñez J et al (2010) Hypercapnic respiratory failure in obesity-hypoventilation syndrome: CO response and acetazolamide treatment effects. Respir Care 55:1442–1448

    PubMed  Google Scholar 

  30. 30.

    Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870. https://doi.org/10.1161/CIRCULATIONAHA.118.034646

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Riemann D, Baum E, Cohrs S et al (2017) S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen. Somnologie 21:2–44. https://doi.org/10.1007/s11818-016-0097-x

    Article  Google Scholar 

  32. 32.

    Scharf SM, Iqbal M, Keller C et al (2002) Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med 166:314–322. https://doi.org/10.1164/rccm.2107027

    Article  PubMed  Google Scholar 

  33. 33.

    Sharkey RA, Mulloy EMT, O’Neill SJ (1999) The acute effects of oxygen and carbon dioxide on renal vascular resistance in patients with an acute exacerbation of COPD. Chest 115:1588–1592. https://doi.org/10.1378/chest.115.6.1588

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    da Silva BC, Kasai T, Coelho FM et al (2017) Fluid redistribution in sleep apnea: therapeutic implications in edematous states. Front Med 4:256. https://doi.org/10.3389/fmed.2017.00256

    Article  Google Scholar 

  35. 35.

    da Silva Paulitsch F, Zhang L (2019) Continuous positive airway pressure for adults with obstructive sleep apnea and cardiovascular disease: a meta-analysis of randomized trials. Sleep Med 54:28–34. https://doi.org/10.1016/j.sleep.2018.09.030

    Article  PubMed  Google Scholar 

  36. 36.

    Stuck BA, Arzt M, Fietze I et al (2020) Partial update of the German S3 guideline sleep-related breathing disorders in adults: AWMF register-no. 063-001—German sleep society (deutsche Gesellschaft für Schlafforschung und Schlafmedizin – DGSM). Somnologie 24:176–208. https://doi.org/10.1007/s11818-020-00257-6

    Article  Google Scholar 

  37. 37.

    Thabut G, Dauriat G, Stern JB et al (2005) Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 127:1531–1536. https://doi.org/10.1378/chest.127.5.1531

    Article  PubMed  Google Scholar 

  38. 38.

    Valli G, Fedeli A, Antonucci R et al (2004) Water and sodium imbalance in COPD patients. Monaldi Arch Chest Dis 61:112–116. https://doi.org/10.4081/monaldi.2004.708

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wells JM, Washko GR, Han MK et al (2012) Pulmonary arterial enlargement and acute exacerbations of COPD. N Engl J Med 367:913–921. https://doi.org/10.1056/NEJMoa1203830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Windisch W, Dreher M, Geiseler J et al (2017) Guidelines for non-invasive and invasive home mechanical ventilation for treatment of chronic respiratory failure—update 2017. Pneumologie 71:722–795. https://doi.org/10.1055/s-0043-118040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Windisch W, Dreher M, Geiseler J et al (2017) S2k-Leitlinie: Nichtinvasive und invasive Beatmung als Therapie der chronischen respiratorischen Insuffizienz – Revision 2017. Pneumologie 71:722–795. https://doi.org/10.1055/s-0043-118040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Xie C, Zhu R, Tian Y, Wang K (2017) Association of obstructive sleep apnoea with the risk of vascular outcomes and all-cause mortality: a meta-analysis. BMJ Open 7:e13983. https://doi.org/10.1136/bmjopen-2016-013983

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Yeboah J, Redline S, Johnson C et al (2011) Association between sleep apnea, snoring, incident cardiovascular events and all-cause mortality in an adult population: MESA. Atherosclerosis 219:963–968. https://doi.org/10.1016/j.atherosclerosis.2011.08.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cherneva Z, Valev D, Youroukova V et al (2021) Left ventricular diastolic dysfunction in non-severe chronic obstructive pulmonary disease—a step forward in cardiovascuar comorbidome. PLoS ONE. https://doi.org/10.1371/journal.pone.0247940

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Huang WM, Cheng HM, Yu WC et al (2020) The ventilatory abnormalities and prognostic values of H2FPEF scorew in dypnoeic patients with preserved left ventricle systolic function. Esc Heart Fail 7:1872–1879. https://doi.org/10.1002/ehf2.12754

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Huang WM, Feng JY, Cheng HM et al (2020) The role of pulmonary function in patients with heart failure and preserved ejection fraction: looking beyond chronic obstructive pulmonary disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0235152

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zeder K, Avian A, Bachmeier G et al (2021) Elevated pulmonary vascular resistance predicts mortality in COPD patients. Eur Respir J. https://doi.org/10.1183/13993003.00944-2021

    Article  PubMed  Google Scholar 

  48. 48.

    Selim B, Ramar K (2021) Sleep-related breathing disorders: when CPAP is not enough. Neurotherapeutics 18:81–90. https://doi.org/10.1007/s13311-020-00955-x

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Müller.

Ethics declarations

Interessenkonflikt

T. Müller, J.-H. Blohm, M. Dreher und C.F. Vogelmeier geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Redaktion

B. Andrew Remppis, Bad Bevensen

Vedat Schwenger, Stuttgart

Claus F. Vogelmeier, Marburg

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Blohm, JH., Dreher, M. et al. Chronisch-obstruktive Lungenerkrankung, schlafbezogene Atemstörungen und Hypoventilation – Einflüsse auf das kardiorenale System. Internist (2021). https://doi.org/10.1007/s00108-021-01169-9

Download citation

Schlüsselwörter

  • Pulmonale Hypertonie
  • Schlafapnoe
  • Alveoläre Hypoventilation
  • Ödeme
  • Herzinsuffizienz mit erhaltener linksventrikulärer Pumpfunktion

Keywords

  • Hypertension, pulmonary
  • Sleep disordered breathing
  • Hypoventilation, alveolar
  • Edema
  • Heart failure with preserved ejection fraction