Mechanismen der Kardiotoxizität onkologischer Therapien

Mechanisms of cardiotoxicity of oncological therapies

Zusammenfassung

Hintergrund

Onkologische Therapien zeigen am Herz-Kreislauf-System eine Reihe unerwünschter Wirkungen. Insbesondere neuere Therapien sind diesbezüglich unzureichend verstanden, und klinische Daten fehlen bei der Interpretation neuer kardialer Komplikationen.

Ziel der Arbeit

Der vorliegende Beitrag bietet einen Überblick über die Mechanismen kardialer Nebenwirkungen bestimmter onkologischer Therapien.

Material und Methoden

Die Übersichtsarbeit bezieht sich im Wesentlichen auf Daten präklinischer Untersuchungen.

Ergebnisse

Zahlreiche toxische Nebenwirkungen wurde bereits in präklinischen Modellen vorbeschrieben. Für bestimmte Gruppen von Medikamenten (z. B. Anthrazykline, Tyrosinkinaseinhibitoren, Immun-Checkpoint-Inhibitoren) sind die zugrunde liegenden molekularen Mechanismen aber nicht abschließend geklärt.

Schlussfolgerung

Basierend auf den bekannten molekularen Mechanismen von Kardiotoxizität erschließen sich möglicherweise verbesserte klinische Entscheidungswege. Ein besseres Verständnis ermöglicht auch neue Einblicke in die Pathophysiologie kardialer Erkrankungen. Ziel wird sein, die Ergebnisse translational zu nutzen und in geeigneten kardioonkologischen Einheiten klinisch umzusetzen.

Abstract

Background

Oncological therapies show a number of undesired adverse effects on the cardiovascular system. In particular, the side effects of recently established oncological therapies are incompletely understood and clinical data are lacking in the interpretation of novel cardiac complications.

Objective

This article provides a short overview of the mechanisms of cardiac side effects of certain oncological therapies.

Material and methods

The review is mainly based on data from preclinical studies.

Results

Numerous toxic side effects have already been described and investigated in preclinical models. For certain groups of drugs (e.g. anthracyclines, tyrosine kinase inhibitors and immune checkpoint inhibitors) the underlying molecular mechanisms are still not fully understood.

Conclusion

An improved understanding of the molecular mechanism involved in cardiotoxicity might help improve the quality of clinical decisions. Additionally, it will provide new insights into the pathophysiology of cardiac diseases. The aim is to use the results of translational research and to clinically implement them in suitable cardio-oncology units.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Aryal B, Rao VA (2016) Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B‑lymphocytes. PLoS ONE 11(7):e158376. https://doi.org/10.1371/journal.pone.0158376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Li J, Wang PY, Long NA, Zhuang J, Springer DA, Zou J, Lin Y, Bleck CKE, Park JH, Kang JG, Hwang PM (2019) p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci U S A 116(39):19626–19634. https://doi.org/10.1073/pnas.1904979116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zhu W, Zhang W, Shou W, Field LJ (2014) P53 inhibition exacerbates late-stage anthracycline cardiotoxicity. Cardiovasc Res 103(1):81–89. https://doi.org/10.1093/cvr/cvu118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Tscheschner H, Meinhardt E, Schlegel P, Jungmann A, Lehmann LH, Muller OJ, Most P, Katus HA, Raake PW (2019) CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS ONE 14(4):e215992. https://doi.org/10.1371/journal.pone.0215992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Amgalan D, Garner TP, Pekson R, Jia XF, Yanamandala M, Paulino V, Liang FG, Corbalan JJ, Lee J, Chen Y, Karagiannis GS, Sanchez LR, Liang H, Narayanagari S‑R, Mitchell K, Lopez A, Margulets V, Scarlata M, Santulli G, Asnani A, Peterson RT, Hazan RB, Condeelis JS, Oktay MH, Steidl U, Kirshenbaum LA, Gavathiotis E, Kitsis RN (2020) A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nat Cancer 1:315–328. https://doi.org/10.1038/s43018-020-0039-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642. https://doi.org/10.1038/nm.2919

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Godtel-Armbrust U, Wojnowski L (2014) Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 14:842. https://doi.org/10.1186/1471-2407-14-842

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Heckmann MB, Doroudgar S, Katus HA, Lehmann LH (2018) Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis 10(35):S4296–S4305. https://doi.org/10.21037/jtd.2018.09.87

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cornell RF, Ky B, Weiss BM, Dahm CN, Gupta DK, Du L, Carver JR, Cohen AD, Engelhardt BG, Garfall AL, Goodman SA, Harrell SL, Kassim AA, Jadhav T, Jagasia M, Moslehi J, O’Quinn R, Savona MR, Slosky D, Smith A, Stadtmauer EA, Vogl DT, Waxman A, Lenihan D (2019) Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. J Clin Oncol 37(22):1946–1955. https://doi.org/10.1200/JCO.19.00231

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. https://doi.org/10.1038/nbt1358

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5(5):495–502. https://doi.org/10.1038/8379

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Haigh JJ (2008) Role of VEGF in organogenesis. Organogenesis 4(4):247–256. https://doi.org/10.4161/org.4.4.7415

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nemeth BT, Varga ZV, Wu WJ, Pacher P (2017) Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br J Pharmacol 174(21):3727–3748. https://doi.org/10.1111/bph.13643

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chan R, Hardy WR, Laing MA, Hardy SE, Muller WJ (2002) The catalytic activity of the ErbB‑2 receptor tyrosine kinase is essential for embryonic development. Mol Cell Biol 22(4):1073–1078. https://doi.org/10.1128/mcb.22.4.1073-1078.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398. https://doi.org/10.1038/378394a0

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N, Chien KR, Birchmeier C, Garratt AN (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 99(13):8880–8885. https://doi.org/10.1073/pnas.122249299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    ElZarrad MK, Mukhopadhyay P, Mohan N, Hao E, Dokmanovic M, Hirsch DS, Shen Y, Pacher P, Wu WJ (2013) Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One 8(11):e79543. https://doi.org/10.1371/journal.pone.0079543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19(23):6341–6350. https://doi.org/10.1093/emboj/19.23.6341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ramirez MT, Sah VP, Zhao XL, Hunter JJ, Chien KR, Brown JH (1997) The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem 272(22):14057–14061. https://doi.org/10.1074/jbc.272.22.14057

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116(12):1413–1423. https://doi.org/10.1161/CIRCULATIONAHA.106.679589

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Harris IS, Zhang S, Treskov I, Kovacs A, Weinheimer C, Muslin AJ (2004) Raf‑1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 110(6):718–723. https://doi.org/10.1161/01.CIR.0000138190.50127.6A

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R, Tocchetti CG, Lyon AR, Padera RF, Johnson DB, Moslehi J (2019) Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res 115(5):854–868. https://doi.org/10.1093/cvr/cvz026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bockstahler M, Fischer A, Goetzke CC, Neumaier HL, Sauter M, Kespohl M, Muller AM, Meckes C, Salbach C, Schenk M, Heuser A, Landmesser U, Weiner J, Meder B, Lehmann L, Kratzer A, Klingel K, Katus HA, Kaya Z, Beling A (2020) Heart-specific immune responses in an animal model of autoimmunerelated myocarditis mitigated by an immunoproteasome inhibitor and genetic ablation. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.119.043171

    Article  PubMed  Google Scholar 

  24. 24.

    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD‑1 receptor-deficient mice. Science 291(5502):319–322. https://doi.org/10.1126/science.291.5502.319

    CAS  Article  Google Scholar 

  25. 25.

    Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9(12):1477–1483. https://doi.org/10.1038/nm955

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M (2019) Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med 380(24):2377–2379. https://doi.org/10.1056/NEJMc1901677

    Article  PubMed  Google Scholar 

  27. 27.

    Moslehi JJ, Johnson DB, Sosman JA (2017) Myocarditis with immune checkpoint blockade. N Engl J Med 376(3):292. https://doi.org/10.1056/NEJMc1615251

    Article  PubMed  Google Scholar 

  28. 28.

    Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 108(10):4123–4128. https://doi.org/10.1073/pnas.1015081108

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Berry JM, Cao DJ, Rothermel BA, Hill JA (2008) Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 7(1):53–67. https://doi.org/10.1517/14740338.7.1.53

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Lehmann LH, Worst BC, Stanmore DA, Backs J (2014) Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 71(9):1673–1690. https://doi.org/10.1007/s00018-013-1516-9

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Rassaf T, Totzeck M, Backs J, Bokemeyer C, Hallek M, Hilfiker-Kleiner D, Hochhaus A, Luftner D, Muller OJ, Neudorf U, Pfister R, von Haehling S, Lehmann LH, Bauersachs J, Committee for Clinical Cardiovascular Medicine of the German Cardiac Society (2020) Onco-cardiology: consensus paper of the German cardiac society, the German society for pediatric cardiology and congenital heart defects and the German society for hematology and medical oncology. Clin Res Cardiol. https://doi.org/10.1007/s00392-020-01636-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Heckmann MB, Reinhardt F, Finke D, Katus HA, Haberkorn U, Leuschner F, Lehmann LH (2020) Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ Cardiovasc Imag 13(9)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. med. L. H. Lehmann.

Ethics declarations

Interessenkonflikt

L.H. Lehmann berät Daiichi Sankyio, Senaca und Servier und erhielt Vortragshonorare von Novartis, Daiichi Sankyio und MSD. S. Fröhling berät Bayer, Illumina, Roche, erhält Forschungsförderung von AstraZeneca, Boehringer Ingelheim, Pfizer, PharmaMar und Roche, sowie Unterstützung von Amgen, Eli Lilly, Illumina, PharmaMar und Roche und erhielt Vortragshonorare von Amgen, Eli Lilly, PharmaMar, sowie Roche.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Hasenfuß, Göttingen

S. von Haehling, Göttingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehmann, L.H., Fröhling, S. Mechanismen der Kardiotoxizität onkologischer Therapien. Internist 61, 1132–1139 (2020). https://doi.org/10.1007/s00108-020-00881-2

Download citation

Schlüsselwörter

  • Kardioonkologie
  • Anthrazykline
  • Doxorubicin
  • Immun-Checkpoint-Inhibitoren
  • Herzinsuffizienz

Keywords

  • Cardio-oncology
  • Anthracyclines
  • Doxorubicin
  • Immune checkpoint inhibitor
  • Heart failure