Skip to main content
Log in

Was ist gesichert in der Therapie der akuten myeloischen Leukämie?

What is recommended in the treatment of acute myeloid leukemia?

  • Schwerpunkt: Was ist gesichert in der Therapie?
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die akute myeloische Leukämie (AML) entsteht durch eine maligne Transformation und Proliferation von myeloischen Vorläuferzellen, die zu einer Verdrängung der normalen Hämatopoese führt. Bei Erstdiagnose wird neben einer zytogenetischen Analyse auch die Mutationsdiagnostik von bei der AML häufiger mutierten Genen vorgenommen. Diese genetische Diagnostik ist wesentlich für die Risikostratifizierung und spätere Behandlung der Patienten. Für die intensiv behandelbaren Patienten wurden in den letzten Jahren drei neue Medikamente zugelassen: ein neuer Tyrosinkinaseinhibitor (Midostaurin) für Patienten mit einer FLT3-Mutation, eine besondere liposomale Zubereitung der Chemotherapie (CPX-351) für Formen der sekundären AML sowie ein CD33-Antikörper-Wirkstoff-Konjugat (Gemtuzumab-Ozogamicin) für die AML mit CD33-Expression. Die allogene Stammzelltransplantation bleibt die wesentliche Therapiekomponente für Patienten mit intermediärem und höherem Risiko sowie in der Rezidivsituation. Für ältere, nicht intensiv behandelbare Patienten ist der Einsatz von demethylierenden Substanzen die Therapie der Wahl. Ziel ist hier eine Lebensverlängerung bei akzeptabler Lebensqualität. In den letzten Jahren wurden auch für diese Patientengruppe neue vielversprechende Substanzen erfolgreich geprüft und in den USA bereits zugelassen. Dazu gehören der Bcl-2-Inhibitor Venetoclax, der in Deutschland bereits für die chronische lymphatische Leukämie zugelassen ist, sowie IDH1/IDH2-Inhibitoren für Patienten mit einer IDH1/IDH2-Mutation in ihren Leukämiezellen. Eine Sondergruppe der AML stellt die akute Promyelozytenleukämie dar, bei der eine Kombinationstherapie mit all-trans-Retinsäure und Arsentrioxid zu exzellenten Ergebnissen führt.

Abstract

Acute myeloid leukemia (AML) is characterized by a malignant transformation and proliferation of myeloid progenitor cells that cause a replacement of normal hematopoiesis. Diagnostic workup for AML includes cytogenetic analysis and mutational screening covering frequently mutated genes in AML. The genetic analysis is required for risk stratification and treatment decisions. Very recently, three novel drugs have been approved for patients who can be intensively treated: a tyrosine kinase inhibitor (midostaurin) for patients with FLT3 mutations, a liposomal formulation of chemotherapy (CPX) for patients with features of secondary AML, and a CD33 antibody–drug conjugate (gemtuzumab–ozogamicin) for AML with CD33 expression. Allogeneic stem cell transplantation remains an important treatment strategy for patients with intermediate- or high-risk AML and for patients with relapsed AML. For elderly patients who cannot undergo intensive treatment, demethylating agents are the treatment of choice. The aim is to prolong life expectancy with acceptable quality of life. In recent clinical trials, novel drugs have shown promising results in this patient population. Some of these drugs have already been approved in the US. Among these drugs are the Bcl‑2 inhibitor venetoclax, which is already approved in Germany for chronic lymphatic leukemia, as well as IDH1/IDH2 inhibitors (the latter for patients with IDH1/IDH2 mutated AML). Acute promyelocytic leukemia represents a special type of AML that should be treated with a combination of all-trans retinoic acid and arsenic trioxide leading to excellent outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. National Cancer Institute (2019) Cancer stat facts: leukemia - acute myeloid leukemia (AML). https://seer.cancer.gov/statfacts/html/amyl.html. Zugegriffen: 22.10.2019

    Google Scholar 

  2. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333

    Article  CAS  Google Scholar 

  3. Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447

    Article  Google Scholar 

  4. Papaemmanuil E, Gerstung M, Bullinger L et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221

    Article  CAS  Google Scholar 

  5. Thol F, Gabdoulline R, Liebich A et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132(16):1703–1713

    Article  CAS  Google Scholar 

  6. Krug U, Rollig C, Koschmieder A et al (2010) Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet 376(9757):2000–2008

    Article  CAS  Google Scholar 

  7. Fernandez HF, Sun Z, Yao X et al (2009) Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 361(13):1249–1259

    Article  CAS  Google Scholar 

  8. Lowenberg B, Ossenkoppele GJ, van Putten W et al (2009) High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med 361(13):1235–1248

    Article  Google Scholar 

  9. Burnett AK, Russell NH, Hills RK et al (2015) A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood 125(25):3878–3885

    Article  CAS  Google Scholar 

  10. Dendorfer S, Kramer M, Schmidt-Brücken K et al (2017) Induction therapy for AML with 90 Mg/m² daunorubicin results in higher troponin T serum levels in comparison to treatment with 60 Mg/m² daunorubicin. Blood 130:3901

    Google Scholar 

  11. Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152

    Article  Google Scholar 

  12. Schaich M, Rollig C, Soucek S et al (2011) Cytarabine dose of 36 g/m² compared with 12 g/m² within first consolidation in acute myeloid leukemia: results of patients enrolled onto the prospective randomized AML96 study. J Clin Oncol 29(19):2696–2702

    Article  CAS  Google Scholar 

  13. Burnett AK, Russell NH, Hills RK et al (2013) Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol 31(27):3360–3368

    Article  CAS  Google Scholar 

  14. Gotlib J, Kluin-Nelemans HC, George TI et al (2016) Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med 374(26):2530–2541

    Article  CAS  Google Scholar 

  15. Stone RM, Mandrekar SJ, Sanford BL et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  Google Scholar 

  16. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  Google Scholar 

  17. Lancet JE, Cortes JE, Hogge DE et al (2014) Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 123(21):3239–3246

    Article  CAS  Google Scholar 

  18. Lancet JE, Uy GL, Cortes JE et al (2018) CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol 36(26):2684–2692

    Article  CAS  Google Scholar 

  19. Thol F, Schlenk RF (2014) Gemtuzumab ozogamicin in acute myeloid leukemia revisited. Expert Opin Biol Ther 14(8):1185–1195

    Article  CAS  Google Scholar 

  20. Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    CAS  PubMed  Google Scholar 

  21. Petersdorf S, Kopecky KJ, Stuart RK (2009) Preliminary results of Southwest Oncology Group Study S0106. Annual Meeting of the American Society of Hematology, New Orleans. Abstract 790 (An International Intergroup Phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia)

    Google Scholar 

  22. Petersdorf SH, Kopecky KJ, Slovak M et al (2013) A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 121(24):4854–4860

    Article  CAS  Google Scholar 

  23. Castaigne S, Pautas C, Terre C et al (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379(9825):1508–1516

    Article  CAS  Google Scholar 

  24. Amadori S, Suciu S, Stasi R et al (2013) Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J Clin Oncol 31(35):4424–4430

    Article  CAS  Google Scholar 

  25. Hills RK, Castaigne S, Appelbaum FR et al (2014) Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15(9):986–996

    Article  CAS  Google Scholar 

  26. Burnett AK, Milligan D, Prentice AG et al (2007) A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 109(6):1114–1124

    Article  CAS  Google Scholar 

  27. Dombret H, Seymour JF, Butrym A et al (2015) International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30 % blasts. Blood 126(3):291–299

    Article  CAS  Google Scholar 

  28. DiNardo CD, Pratz K, Pullarkat V et al (2019) Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133(1):7–17

    Article  CAS  Google Scholar 

  29. Wei AH, Strickland SA Jr, Hou JZ et al (2019) Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol 37(15):1277–1284

    Article  CAS  Google Scholar 

  30. Stein EM, DiNardo CD, Pollyea DA et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731

    Article  CAS  Google Scholar 

  31. DiNardo CD, Stein EM, de Botton S et al (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398

    Article  CAS  Google Scholar 

  32. Cortes JE, Heidel FH, Hellmann A et al (2019) Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33(2):379–389

    Article  CAS  Google Scholar 

  33. Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121

    Article  CAS  Google Scholar 

  34. Platzbecker U, Avvisati G, Cicconi L et al (2017) Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J Clin Oncol 35(6):605–612

    Article  CAS  Google Scholar 

  35. Onkopedia-Leitlinien für supportive Therapie der Deutschen Gesellschaft für Hämatologie und Medizinische Onkologie. https://www.onkopedia.com/de/onkopedia/guidelines

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Thol.

Ethics declarations

Interessenkonflikt

F. Thol weist auf folgende Beziehungen hin: Unterstützung klinischer Studien durch Astellas, Celgene, Novartis, Pfizer.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Haller, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thol, F. Was ist gesichert in der Therapie der akuten myeloischen Leukämie?. Internist 60, 1240–1250 (2019). https://doi.org/10.1007/s00108-019-00696-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-019-00696-w

Schlüsselwörter

Keywords

Navigation