Skip to main content

Bedeutung des zirkadianen Schlafrhythmus für den Energiestoffwechsel

Importance of sleep and circadian rhythm for energy metabolism

Zusammenfassung

Die zirkadiane Uhr ist ein hoch spezialisierter Taktgeber des menschlichen Organismus und stellt einen essenziellen Bestandteil eines gesunden Stoffwechsels dar. Der intrinsische zirkadiane Rhythmus kann unter anderem durch exogene Faktoren wie Licht/Dunkelheit, Verhaltensmuster, körperliche Aktivität, Essgewohnheiten und Schlafmangel bzw. Schlafstörungen moduliert werden. Zudem kann eine veränderte Expression von Uhrengenen, beispielsweise von PERIOD 1 und 2, die innere Rhythmik beeinflussen. Veränderungen der zirkadianen Rhythmik werden mit einer Vielzahl an psychischen und physischen Erkrankungen in Verbindung gebracht. Aktuelle Studien belegen, dass vor allem quantitative und qualitative Veränderungen des Schlafrhythmus signifikant mit einer erhöhten Prävalenz von Adipositas einhergehen. Zudem können eine eingeschränkte Schlafdauer und -qualität eine verminderte Glukosetoleranz und Insulinsensitivität bewirken und damit ein erhöhtes Diabetesrisiko mit sich bringen. Neben den Kernkomponenten des metabolischen Syndroms zeigen sich Veränderungen hormoneller und neuronaler Signalwege, die erheblich unseren Energiestoffwechsel beeinflussen. Diese Übersichtsarbeit bietet einen Überblick über die aktuelle Studienlage und beschreibt den Zusammenhang zwischen zirkadianen Rhythmen, Schlaf und menschlichem Stoffwechsel.

Abstract

The circadian clock is a complex and highly specialized network of the human organism and is key for metabolic health. Circadian rhythms are modulated by behavioral patterns, physical activity, food intake as well as sleep loss and sleep disorders. Furthermore, an altered expression of clock genes (e. g. PERIOD1 and 2) can alter circadian rhythms. Chronodisruption, i. e. the alteration of circadian rhythms, is associated with a variety of mental and physical illnesses. Recent studies show a significant association between quantitative and qualitative sleep rhythm disturbances and an increasing prevalence of obesity. Furthermore, reduced sleep quality and duration lead to decreased glucose tolerance and insulin sensitivity, thus increasing the risk of developing type 2 diabetes. In addition to the core components of the metabolic syndrome, there are also changes in hormonal and neuronal signaling pathways impinging on human energy metabolism. This review provides an overview of the current literature highlighting the close link between circadian rhythms and human energy metabolism.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Brainard J, Gobel M, Scott B et al (2015) Health implications of disrupted circadian rhythms and the potential for daylight as therapy. Anesthesiology 122:1170–1175

    Article  Google Scholar 

  2. 2.

    Broussard JL, Chapotot F, Abraham V et al (2015) Sleep restriction increases free fatty acids in healthy men. Diabetologia 58:791–798

    CAS  Article  Google Scholar 

  3. 3.

    Buxton OM, Cain SW, O’Connor SP et al (2012) Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4:129ra43

    Article  Google Scholar 

  4. 4.

    Cappuccio FP, D’Elia L, Strazzullo P, Miller MA (2010) Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 33:414–420

    Article  Google Scholar 

  5. 5.

    Cappuccio FP, Taggart FM, Kandala N‑B et al (2008) Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31:619–626

    Article  Google Scholar 

  6. 6.

    Czeisler CA (2011) Impact of sleepiness and sleep deficiency on public health—utility of biomarkers. J Clin Sleep Med 7:S6–S8

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gangwisch JE, Heymsfield SB, Boden-Albala B et al (2007) Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep 30:1667–1673

    Article  Google Scholar 

  8. 8.

    Greer SM, Goldstein AN, Walker MP (2013) The impact of sleep deprivation on food desire in the human brain. Nat Commun 4:2259

    Article  Google Scholar 

  9. 9.

    Hall MH, Muldoon MF, Jennings JR et al (2008) Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep 31:635–643

    Article  Google Scholar 

  10. 10.

    Hayes AL, Xu F, Babineau D, Patel SR (2011) Sleep duration and circulating adipokine levels. Sleep 34:147–152

    Article  Google Scholar 

  11. 11.

    Hirota T, Morioka T, Yoda K et al (2018) Positive association of plasma leptin with sleep quality in obese type 2 diabetes patients. J Diabetes Investig. https://doi.org/10.1111/jdi.12826

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Husse J, Hintze SC, Eichele G et al (2012) Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. PLoS ONE 7:e52983

    CAS  Article  Google Scholar 

  13. 13.

    Kaneita Y, Uchiyama M, Yoshiike N, Ohida T (2008) Associations of usual sleep duration with serum lipid and lipoprotein levels. Sleep 31:645–652

    Article  Google Scholar 

  14. 14.

    Kecklund G, Axelsson J (2016) Health consequences of shift work and insufficient sleep. BMJ 355:i5210

    Article  Google Scholar 

  15. 15.

    Kong AP, Wing Y‑K, Choi KC et al (2011) Associations of sleep duration with obesity and serum lipid profile in children and adolescents. Sleep Med 12:659–665

    Article  Google Scholar 

  16. 16.

    Leproult R, Van Cauter E (2010) Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev 17:11–21

    CAS  Article  Google Scholar 

  17. 17.

    Lund J, Arendt J, Hampton SM et al (2001) Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 171:557–564

    CAS  Article  Google Scholar 

  18. 18.

    Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. Plos Med 8:e1001141

    Article  Google Scholar 

  19. 19.

    Puttonen S, Viitasalo K, Härmä M (2012) The relationship between current and former shift work and the metabolic syndrome. Scand J Work Environ Health 38:343–348

    Article  Google Scholar 

  20. 20.

    Ren H, Liu Z, Zhou X, Yuan G (2018) Association of sleep duration with apolipoproteins and the apolipoprotein B/A1 ratio: the China health and nutrition survey. Nutr Metab (Lond) 15:1

    Article  Google Scholar 

  21. 21.

    Riddle M, Mezias E, Foley D et al (2017) Differential localization of PER1 and PER2 in the brain master circadian clock. Eur J Neurosci 45:1357–1367

    Article  Google Scholar 

  22. 22.

    Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    CAS  Article  Google Scholar 

  23. 23.

    Schmid SM, Hallschmid M, Jauch-Chara K et al (2008) A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17:331–334

    Article  Google Scholar 

  24. 24.

    Sharma SK, Agrawal S, Damodaran D et al (2011) CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med 365:2277–2286

    CAS  Article  Google Scholar 

  25. 25.

    Simpson NS, Banks S, Dinges DF (2010) Sleep restriction is associated with increased morning plasma leptin concentrations, especially in women. Biol Res Nurs 12:47–53

    CAS  Article  Google Scholar 

  26. 26.

    Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439

    CAS  Article  Google Scholar 

  27. 27.

    Steiger A, Dresler M, Kluge M, Schüssler P (2013) Pathology of sleep, hormones and depression. Pharmacopsychiatry 46(Suppl 1):S30–S35

    CAS  PubMed  Google Scholar 

  28. 28.

    Taveras EM, Gillman MW, Peña M‑M et al (2014) Chronic sleep curtailment and adiposity. Pediatr Electron Pages 133:1013–1022

    Google Scholar 

  29. 29.

    Yoshino J, Klein S (2013) A novel link between circadian clocks and adipose tissue energy metabolism. Diabetes 62:2175–2177

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Schmid.

Ethics declarations

Interessenkonflikt

S. Meyhöfer, B. Wilms, H. Oster und S.M. Schmid geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die im Beitrag zitierten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Lehnert, Lübeck

C.C. Sieber, Nürnberg

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyhöfer, S., Wilms, B., Oster, H. et al. Bedeutung des zirkadianen Schlafrhythmus für den Energiestoffwechsel. Internist 60, 122–127 (2019). https://doi.org/10.1007/s00108-018-0543-x

Download citation

Schlüsselwörter

  • Adipositas
  • Diabetes mellitus
  • Metabolisches Syndrom
  • Zirkadianer Rhythmus
  • Chronobiologie

Keywords

  • Obesity
  • Diabetes mellitus
  • Metabolic syndrome
  • Circadian Rhythm
  • Chronobiology