Physiologie und klinische Bedeutung von weißem, beigem und braunem Fettgewebe

Physiology and clinical importance of white, beige and brown adipose tissue

Zusammenfassung

Die metabolischen Funktionen verschiedener Entitäten von Fettgewebe sind von hohem wissenschaftlichem und klinischem Interesse. Weißes Fettgewebe ist nicht nur Energiespeicher, sondern spielt als hochaktives endokrines Organ auch eine wesentliche Rolle bei der Entstehung von Diabetes mellitus, Dyslipidämie, arterieller Hypertonie und kardiovaskulären Erkrankungen. Braunes Fettgewebe hat die Fähigkeit, chemische Energie in Wärme umzuwandeln, und könnte hierdurch einen gegensätzlichen, schützenden, Effekt haben. Die Aktivierung von braunem Fettgewebe und die Induktion der Entwicklung von Adipozyten mit den Charakteristika brauner Fettzellen könnten einen wesentlichen Beitrag zur Behandlung der genannten Zivilisationserkrankungen leisten. Der vorliegende Beitrag soll einen Überblick über das aktuelle Verständnis von Physiologie und Pathophysiologie der verschiedenen Fettgewebsarten und über das resultierende therapeutische Potenzial geben.

Abstract

The metabolic functions of different kinds of adipose tissue are of growing scientific and clinical interest. White adipose tissue is not only an energy store but as a highly active endocrine organ it also plays an essential role in the development of diabetes mellitus, dyslipidemia, arterial hypertension and cardiovascular diseases. Brown adipose tissue, on the other hand, can convert chemical energy into heat and could therefore have an opposing, protective effect. The activation of brown adipose tissue and the induction of the development of adipocytes with the characteristics of brown fat cells could make a significant contribution to the treatment of these civilization diseases. This article provides an overview of the current understanding of the physiology and pathophysiology of different adipose tissue types and the resulting therapeutic potential.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Alberti KG, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    CAS  Article  Google Scholar 

  2. 2.

    Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    CAS  Article  Google Scholar 

  3. 3.

    Berbee JF, Boon MR, Khedoe PP et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6:6356

    CAS  Article  Google Scholar 

  4. 4.

    Carpentier AC, Blondin DP, Virtanen KA et al (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne) 9:447

    Article  Google Scholar 

  5. 5.

    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    CAS  Article  Google Scholar 

  6. 6.

    Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21:33–38

    CAS  Article  Google Scholar 

  7. 7.

    Esteve Ràfols M (2014) Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr 51:100–112

    Article  Google Scholar 

  8. 8.

    Gnad T, Scheibler S, Von Kugelgen I et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399

    CAS  Article  Google Scholar 

  9. 9.

    Hamann A, Flier JS, Lowell BB (1996) Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137:21–29

    CAS  Article  Google Scholar 

  10. 10.

    Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263

    CAS  Article  Google Scholar 

  11. 11.

    Huttunen P, Hirvonen J, Kinnula V (1981) The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol 46:339–345

    CAS  Article  Google Scholar 

  12. 12.

    Irving BA, Still CD, Argyropoulos G (2014) Does IRISIN have a BRITE future as a therapeutic agent in humans? Curr Obes Rep 3:235–241

    Article  Google Scholar 

  13. 13.

    Iwen KA, Backhaus J, Cassens M et al (2017) Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metab 102:4226–4234

    Article  Google Scholar 

  14. 14.

    Kopecky J, Clarke G, Enerback S et al (1995) Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96:2914–2923

    CAS  Article  Google Scholar 

  15. 15.

    Lee P, Greenfield JR, Ho KK et al (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–606

    CAS  Article  Google Scholar 

  16. 16.

    Leitner BP, Huang S, Brychta RJ et al (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A 114:8649–8654

    CAS  Article  Google Scholar 

  17. 17.

    Lowell BB, S‑Susulic V, Hamann A et al (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742

    CAS  Article  Google Scholar 

  18. 18.

    Lynes MD, Leiria LO, Lundh M et al (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23:631–637

    CAS  Article  Google Scholar 

  19. 19.

    Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  Google Scholar 

  20. 20.

    Muller MJ, Geisler C, Heymsfield SB et al (2018) Recent advances in understanding body weight homeostasis in humans. F1000Res 7:1025

    Article  Google Scholar 

  21. 21.

    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    CAS  Article  Google Scholar 

  22. 22.

    Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Puar T, Van Berkel A, Gotthardt M et al (2016) Genotype-dependent brown adipose tissue activation in patients with pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 101:224–232

    CAS  Article  Google Scholar 

  24. 24.

    Speakman JR, Levitsky DA, Allison DB et al (2011) Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech 4:733–745

    Article  Google Scholar 

  25. 25.

    Unger RH, Clark GO, Scherer PE et al (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–214

    CAS  Article  Google Scholar 

  26. 26.

    Wolfs MG, Rensen SS, Bruin-Van Dijk EJ et al (2010) Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study. BMC Med Genomics 3:34

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. M. Merkel.

Ethics declarations

Interessenkonflikt

M. Merkel, S.M. Schmid und K.A. Iwen geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Lehnert, Lübeck

C.C. Sieber, Nürnberg

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merkel, M., Schmid, S.M. & Iwen, K.A. Physiologie und klinische Bedeutung von weißem, beigem und braunem Fettgewebe. Internist 60, 115–121 (2019). https://doi.org/10.1007/s00108-018-0540-0

Download citation

Schlüsselwörter

  • Adipositas
  • Diabetes mellitus
  • Metabolisches Syndrom
  • Kardiovaskuläre Erkrankungen
  • Thermogenese

Keywords

  • Obesity
  • Diabetes mellitus
  • Metabolic syndrome
  • Cardiovascular diseases
  • Thermogenesis