Skip to main content
Log in

Pathogenese des Multiplen Myeloms

Pathogenesis of multiple myeloma

  • Schwerpunkt: Multiples Myelom
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das Multiple Myelom (MM) ist eine hämatologische Neoplasie, bei der sich maligne Plasmazellen im Knochenmark (KM) ausbreiten, die gesunde Hämatopoese verdrängen und lytische Knochenläsionen verursachen. Trotz erheblicher Erfolge in der Therapie ist bei den meisten Patienten eine Krankheitsprogression nicht zu verhindern. Das MM gilt weiterhin als unheilbar.

Ziel der Arbeit

Die Progressionsphasen werden beschrieben, um in diesem Rahmen die aktuellen Erkenntnisse zur Pathogenese des MM vorzustellen.

Material und Methoden

Diskussion von Grundlagenarbeiten und aktuellen wissenschaftlichen Publikationen.

Ergebnisse

Genetische Prädisposition, Inflammation und abnorme Immunantwort sind an der Genese des MM beteiligt. Das initiierende genomische Ereignis erfolgt während der B‑Zell-Reifung, woraufhin monoklonale Plasmazellen das KM besiedeln. Dieses frühe Stadium wird als monoklonale Gammopathie unklarer Signifikanz bezeichnet. Ab einer KM-Infiltration >10 % liegt ein asymptomatisches Myelom vor. Treten Endorganschädigungen auf, besteht ein symptomatisches, behandlungsbedürftiges MM. Nach neuesten Erkenntnissen ist das MM durch eine räumliche klonale Heterogenität gekennzeichnet, wobei aggressive Klone auf fokale Läsionen begrenzt und somit am Beckenkamm nicht nachweisbar sein können. Aggressive Klone haben oft vollständig inaktivierte Tumorsuppressorgene, wie TP53, und werden durch die Therapie selektiert, weshalb jedes Rezidiv beim MM schwieriger zu behandeln ist.

Diskussion

Die Tumorbiologie bestimmt den Verlauf des MM und erklärt die heterogenen Therapieergebnisse, die trotz intensiver Behandlung zu beobachten sind.

Abstract

Background

Multiple myeloma (MM) is a hematologic malignancy characterized by monoclonal plasma cells infiltrating the bone marrow thereby causing anemia and lytic bone lesions. Despite significant improvement in overall survival, most MM patients inevitably, yet unpredictably, develop refractory disease and MM remains largely incurable.

Objective

This article describes the stages of progression and presents current insights into the pathogenesis of MM.

Material and methods

Discussion of basic conceptional works and most recent scientific publications.

Results

Genetic predisposition, inflammation and abnormal immune response are responsible for the pathogenesis of MM. The initiating genomic event occurs during B cell maturation and clonal plasma cells are disseminated within the bone marrow (BM). This early stage is called monoclonal gammopathy of undetermined significance. The next stage of asymptomatic myeloma, shows a BM infiltration >10%. End organ damage defines symptomatic MM requiring treatment. According to most recent studies MM is characterized by spatial clonal heterogeneity, with aggressive clones frequently being restricted to focal lesions and therefore not being detectable at the iliac crest. Aggressive clones often present with complete inactivation of tumor suppressor genes, such as TP53 and are selected during treatment, which explains the difficulties in treating relapsed MM.

Conclusion

The tumor biology determines the progression of MM and underlies the heterogeneous response to treatment, which can be observed despite intensive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Landgren O, Zeig-Owens R, Giricz O, Goldfarb D, Murata K, Thoren K et al (2018) Multiple myeloma and its precursor disease among firefighters exposed to the World Trade Center disaster. JAMA Oncol 4(6):821–827

    Article  Google Scholar 

  2. Hemminki K, Sundquist J, Lorenzo Bermejo J (2008) Familial risks for cancer as the basis for evidence-based clinical referral and counseling. Oncologist 13(3):239–247

    Article  Google Scholar 

  3. Went M, Sud A, Forsti A, Halvarsson BM, Weinhold N, Kimber S et al (2018) Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun 9(1):3707–3713

    Article  Google Scholar 

  4. Halvarsson BM, Wihlborg AK, Ali M, Lemonakis K, Johnsson E, Niroula A et al (2017) Direct evidence for a polygenic etiology in familial multiple myeloma. Blood 1(10):619–623

    CAS  Google Scholar 

  5. Landgren O, Gridley G, Turesson I, Caporaso NE, Goldin LR, Baris D et al (2006) Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood 107(3):904–906

    Article  CAS  Google Scholar 

  6. Nair S, Branagan AR, Liu J, Boddupalli CS, Mistry PK, Dhodapkar MV (2016) Clonal immunoglobulin against lysolipids in the origin of myeloma. N Engl J Med 374(6):555–561

    Article  CAS  Google Scholar 

  7. Bosseboeuf A, Feron D, Tallet A, Rossi C, Charlier C, Garderet L et al (2017) Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens. JCI Insight. https://doi.org/10.1172/jci.insight.95367

    Article  PubMed  PubMed Central  Google Scholar 

  8. McShane CM, Murray LJ, Landgren O, O’Rorke MA, Korde N, Kunzmann AT et al (2014) Prior autoimmune disease and risk of monoclonal gammopathy of undetermined significance and multiple myeloma: a systematic review. Cancer Epidemiol Biomarkers Prev 23(2):332–342

    Article  CAS  Google Scholar 

  9. Morgan GJ, Rasche L (2018) Maintaining therapeutic progress in multiple myeloma by integrating genetic and biological advances into the clinic. Expert Rev Hematol 11(7):513–523

    Article  CAS  Google Scholar 

  10. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6(10):741–750

    Article  CAS  Google Scholar 

  11. Ichimaru M, Ishimaru T, Mikami M, Matsunaga M (1982) Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950–76: relationship to radiation dose absorbed by marrow. J Natl Cancer Inst 69(2):323–328

    CAS  PubMed  Google Scholar 

  12. Walker BA, Wardell CP, Melchor L, Brioli A, Johnson DC, Kaiser MF et al (2014) Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia 28(2):384–390

    Article  Google Scholar 

  13. Kristinsson SY, Tang M, Pfeiffer RM, Bjorkholm M, Goldin LR, Blimark C et al (2012) Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica 97(6):854–858

    Article  Google Scholar 

  14. Dutta AK, Fink JL, Grady JP, Morgan GJ, Mullighan CG, To LB et al (2018) Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. https://doi.org/10.1038/s41375-018-0206-x

    Article  PubMed  Google Scholar 

  15. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C et al (2017) Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 8(1):268–216

    Article  CAS  Google Scholar 

  16. Rasche L, Angtuaco EJ, Alpe TL, Gershner GH, McDonald JE, Samant RS et al (2018) The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 132(1):59–66

    Article  CAS  Google Scholar 

  17. Muchtar E, Magen H, Gertz MA (2017) High-risk multiple myeloma: a multifaceted entity, multiple therapeutic challenges. Leuk Lymphoma 58(6):1283–1296

    Article  CAS  Google Scholar 

  18. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F et al (2018) A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. https://doi.org/10.1038/s41375-018-0196-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW et al (2016) Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 128(13):1735–1744

    Article  CAS  Google Scholar 

  20. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J (2014) Curing myeloma at last: defining criteria and providing the evidence. Blood 124(20):3043–3051

    Article  CAS  Google Scholar 

  21. Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G et al (2010) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24(6):1121–1127

    Article  CAS  Google Scholar 

  22. Kortüm K, Engelhardt M, Rasche L et al (2013) Das multiple Myelom. Internist 54:963–977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rasche.

Ethics declarations

Interessenkonflikt

L. Rasche und N. Weinhold geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Hallek, Köln

H. Haller, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasche, L., Weinhold, N. Pathogenese des Multiplen Myeloms. Internist 60, 3–9 (2019). https://doi.org/10.1007/s00108-018-0529-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-018-0529-8

Schlüsselwörter

Keywords

Navigation