Skip to main content
Log in

Genetik von Schilddrüsenknoten und Schilddrüsenkarzinomen

Genetics of thyroid nodules and thyroid carcinoma

  • Schwerpunkt: Schilddrüsenerkrankungen
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Schilddrüsentumoren sind außerordentlich heterogen und weisen unterschiedliche genetische Signaturen auf. Schilddrüsenkarzinome sind monoklonal, der histologische Phänotyp wird weitgehend durch die Art der somatischen Mutationen bestimmt. Die Mutationslast ist in differenzierten Schilddrüsenkarzinomen sehr niedrig, in gering differenzierten und anaplastischen Karzinomen hingegen hoch. In der zytologischen Differenzialdiagnostik von Feinnadelpunktaten kann der Mutationsnachweis hilfreich sein, eine prognostische Bedeutung hat er meist nicht. Von großer Relevanz ist die Molekularpathologie hingegen für die Entwicklung „zielgerichteter“ Therapien bei fortgeschrittenen Schilddrüsenkarzinomen und für immunonkologische Therapiekonzepte.

Abstract

Thyroid nodules are heterogeneous tumors with variable genetic signatures. Thyroid cancers are monoclonal lesions with a defined histomorphology that largely depends on the underlying somatic mutation. While the mutation rate is generally low in differentiated thyroid cancers, poorly differentiated and anaplastic thyroid cancers show a high mutation load. The identification of somatic mutations in fine needle aspirates can be helpful for the differential diagnostics of thyroid nodules; however, a prognostic contribution is less certain. The molecular pathology of thyroid tumors is helpful for the development of targeted therapies and may infer novel immuno-oncological concepts for advanced aggressive thyroid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Krohn K, Führer D, Bayer Y, Eszlinger M, Brauer V, Neumann S, Paschke R (2005) Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 26(4):504–524

    Article  PubMed  CAS  Google Scholar 

  2. Führer D, Bockisch A, Schmid KW (2012) Euthyroid goiter with and without nodules—diagnosis and treatment. Dtsch Arztebl Int 109(29–30):506–515

    PubMed  PubMed Central  Google Scholar 

  3. Studer H, Derwahl M (1995) Mechanisms of nonneoplastic endocrine hyperplasia—a changing concept: a review focused on the thyroid gland. Endocr Rev 16(4):411–426

    PubMed  CAS  Google Scholar 

  4. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22(5):631–656

    Article  PubMed  CAS  Google Scholar 

  5. Müller K, Führer D, Mittag J, Klöting N, Blüher M, Weiss RE, Many MC, Schmid KW, Krohn K (2011) TSH compensates thyroid-specific IGF-I receptor knockout and causes papillary thyroid hyperplasia. Mol Endocrinol 25(11):1867–1879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Führer D, Schmid KW (2010) Benign thyroid nodule or thyroid cancer? Internist (Berl) 51(5):611–619

    Article  Google Scholar 

  7. Versteyhe S, Driessens N, Ghaddhab C, Tarabichi M, Hoste C, Dumont JE, Miot F, Corvilain B, Detours V (2013) Comparative analysis of the thyrocytes and T cells: responses to H2O2 and radiation reveals an H2O2-induced antioxidant transcriptional program in thyrocytes. J Clin Endocrinol Metab 98(10):E1645–E1654

    Article  PubMed  CAS  Google Scholar 

  8. Karger S, Weidinger C, Krause K, Sheu SY, Aigner T, Gimm O, Schmid KW, Dralle H, Fuhrer D (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16(1):189–199

    Article  PubMed  CAS  Google Scholar 

  9. Karger S, Krause K, Engelhardt C, Weidinger C, Gimm O, Dralle H, Sheu-Grabellus SY, Schmid KW, Fuhrer D (2012) Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J Mol Endocrinol 48(3):193–202

    Article  PubMed  CAS  Google Scholar 

  10. Ameziane-El-Hassani R, Talbot M, de Souza Dos SMC, Al Ghuzlan A, Hartl D, Bidart JM, De Deken X, Miot F, Diallo I, de Vathaire F, Schlumberger M, Dupuy C (2015) NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci USA 112(16):5051–5056. https://doi.org/10.1073/pnas.1420707112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Krohn K, Führer D, Holzapfel HP, Paschke R (1998) Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin receptor mutations. J Clin Endocrinol Metab 83(1):130–134

    PubMed  CAS  Google Scholar 

  12. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88(1):354–357

    Article  PubMed  CAS  Google Scholar 

  13. Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H (2013) Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 34(5):691–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Führer D, Holzapfel HP, Wonerow P, Scherbaum WA, Paschke R (1997) Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules. J Clin Endocrinol Metab 82(11):3885–3891

    PubMed  Google Scholar 

  15. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5):2318–2326

    Article  PubMed  CAS  Google Scholar 

  16. Krause K, Prawitt S, Eszlinger M, Ihling C, Sinz A, Schierle K, Gimm O, Dralle H, Steinert F, Sheu SY, Schmid KW, Fuhrer D (2011) Dissecting molecular events in thyroid neoplasia provides evidence for distinct evolution of follicular thyroid adenoma and carcinoma. Am J Pathol 179(6):3066–3074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Führer D, Gimm O, Brabant G, Rosenbaum-Krumme S, Schilddrüsenkarzinom SKW (2014) Rationelle Diagnostik und Therapie. In: Lehnert H (Hrsg) Endokrinologie, Diabetologie und Stoffwechsel, 3. Aufl. Thieme, Stuttgart

    Google Scholar 

  18. Führer D, Musholt T, Schmid KW (2017) Molekulare Pathogenese von Schilddrüsenknoten – Bedeutung für die klinische Versorgung. Laryngorhinootologie 96(9):590–596

    Article  PubMed  Google Scholar 

  19. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–1457

    PubMed  CAS  Google Scholar 

  20. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Máximo V, Botelho T, Seruca R, Sobrinho-Simões M (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22(29):4578–4580

    Article  PubMed  CAS  Google Scholar 

  21. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290(5489):138–141

    Article  PubMed  CAS  Google Scholar 

  22. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690

    Article  CAS  Google Scholar 

  23. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, Cabanillas ME, Sherman SI, Ma B, Curtis M, Goodman V, Kurzrock R (2015) BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid 25(1):71–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, Nolop K, Lee RJ, Sherman SI (2013) Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid 23(10):1277–1283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dummer R, Schadendorf D, Ascierto PA, Larkin J, Lebbé C, Hauschild A (2015) Integrating first-line treatment options into clinical practice: what’s new in advanced melanoma? Melanoma Res 25(6):461–469

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Yu J, Lee C, Xu B, Sartor MA, Koenig RJ (2015) Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget 6(38):40418–40432

    PubMed  PubMed Central  Google Scholar 

  27. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, Janakiraman M, Solit D, Knauf JA, Tuttle RM, Ghossein RA, Fagin JA (2009) Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69(11):4885–4893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xing M, Haugen BR, Schlumberger M (2013) Progress in molecular-based management of differentiated thyroid cancer. Lancet 381:1058–1069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066. https://doi.org/10.1172/JCI85271

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J et al (2014) The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 33(42):4978–4984

    Article  PubMed  CAS  Google Scholar 

  31. Shi X, Liu R, Qu S, Zhu G, Bishop J, Liu X et al (2015) Association of TERT promoter mutation 1,295,228 C〉T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab 100(4):E632–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA et al (2014) BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 32(25):2718–2726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C, Eloy C, Castro P, Prazeres H, Lima J, Amaro T, Lobo C, Martins MJ, Moura M, Cavaco B, Leite V, Cameselle-Teijeiro JM, Carrilho F, Carvalheiro M, Máximo V, Sobrinho-Simões M, Soares P (2014) TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99(5):E754–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM et al (2015) Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet 24(8):2318–2312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Latteyer S, Tiedje V, König K, Ting S, Heukamp LC, Meder L, Schmid KW, Führer D, Moeller LC (2016) Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine 54(3):733–741

    Article  PubMed  CAS  Google Scholar 

  36. Tiedje V, Ting S, Herold T, Synoracki S, Latteyer S, Moeller LC, Zwanziger D, Stuschke M, Fuehrer D, Schmid KW (2017) NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 8(26):42613–42620

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F, Gandhi M, Carty SE, Hodak SP, Luo J, Dacic S, Yu YP, Nikiforova MN, Ferris RL, Altschuler DL, Nikiforov YE (2014) Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci USA 111(11):4233–4238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Smith N, Nucera C (2015) Personalized therapy in patients with anaplastic thyroid cancer: targeting genetic and epigenetic alterations. J Clin Endocrinol Metab 100(1):35–42

    Article  PubMed  CAS  Google Scholar 

  39. Murugan AK, Xing M (2011) Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 71(13):4403–4411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D (2018) Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer 25(3):R153–R161

    Article  PubMed  Google Scholar 

  41. Tiedje V, Kroiss M, Dralle H, Ting S, Stuschke M, Flentje M, Bauer S, Weber F, Brabant G, Lorenz K, Fassnacht M, Führer D, Schmid KW (2015) Protokoll zur multimodalen Therapie des anaplastischen Schilddrüsenkarzinoms. Endokrinol Inf 39(3):66–65

    Google Scholar 

  42. Rosove MH, Peddi PF, Glaspy JA (2013) BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 368(7):684–685

    Article  PubMed  CAS  Google Scholar 

  43. Wagle N, Grabiner BC, Van Allen EM, Amin-Mansour A, Taylor-Weiner A, Rosenberg M et al (2014) Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med 371(15):1426–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Perot G et al (2015) Remarkable response to Crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol 33(20):e84–e87

    Article  PubMed  Google Scholar 

  45. Latteyer S, Tiedje V, Schilling B, Führer D (2016) Perspectives for immunotherapy in endocrine cancer. Endocr Relat Cancer 23(10):R469–84

    Article  PubMed  CAS  Google Scholar 

  46. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, Westra WH, Wood LD, Hruban RH, Tufano RP, Robinson B, Dralle H, Toledo SP, Toledo RA, Morris LG, Ghossein RA, Fagin JA, Chan TA, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N, Nelkin BD, Ball DW (2013) Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 98(2):E364–E369

    Article  PubMed  CAS  Google Scholar 

  47. Tiedje V, Ting S, Walter RF, Herold T, Worm K, Badziong J, Zwanziger D, Schmid KW, Führer D (2016) Prognostic markers and response to vandetanib therapy in sporadic medullary thyroid cancer patients. Eur J Endocrinol 175(3):173–180

    Article  PubMed  CAS  Google Scholar 

  48. Tiedje V, Ting S, Dralle H, Schmid KW, Führer D (2015) Medullary thyroid carcinoma. Internist (Berl) 56(9):1019–1031

    Article  CAS  Google Scholar 

  49. Ting S, Schmid ST, Synoracki S, Schmid KW (2015) Thyroid C cells and their pathology: part 1: normal C cells,—C cell hyperplasia,—precursor of familial medullary thyroid carcinoma. Pathologe 36(6):571

    Article  PubMed  CAS  Google Scholar 

  50. Latteyer S, Klein-Hitpass L, Khandanpour C, Zwanziger D, Poeppel TD, Schmid KW, Führer D, Moeller LC (2016) A 6‑base pair in frame germline deletion in Exon 7 of RET leads to increased RET phosphorylation, ERK activation, and MEN2A. J Clin Endocrinol Metab 101(3):1016–1022

    Article  PubMed  CAS  Google Scholar 

  51. Elisei R, Alevizaki M, Conte-Devolx B et al (2012) European Thyroid Association guidelines for genetic testing and its clinical consequences in medullary thyroid cancer. Eur Thyroid J 2012(1):216–231

    Article  Google Scholar 

  52. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG, American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25(6):567–610

    Article  PubMed  PubMed Central  Google Scholar 

  53. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, Agate L, Vivaldi A, Faviana P, Basolo F, Miccoli P, Berti P, Pacini F, Pinchera A (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93(3):682–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Führer.

Ethics declarations

Interessenkonflikt

D. Führer gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Lehnert, Lübeck

M. Reincke, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führer, D. Genetik von Schilddrüsenknoten und Schilddrüsenkarzinomen. Internist 59, 674–680 (2018). https://doi.org/10.1007/s00108-018-0454-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-018-0454-x

Schlüsselwörter

Keywords

Navigation