Advertisement

Der Internist

, Volume 58, Issue 11, pp 1142–1149 | Cite as

Pseudomonas-aeruginosa-Infektion bei chronisch obstruktiver Lungenerkrankung

Stellenwert der Antibiotikadauertherapie
  • G. G. U. Rohde
  • T. WelteEmail author
Schwerpunkt: Chronische Atemwegsinfektionen

Zusammenfassung

Eine chronische Atemwegsbesiedlung von Pseudomonas aeruginosa bei COPD-Patienten ist wahrscheinlich mit einer Erhöhung von Letalität und Morbidität und einem schnelleren Progress der COPD assoziiert, auch wenn dies nicht mit letzter Sicherheit durch Studien belegt ist. Studien, die zeigen, dass die Prognose von COPD-Patienten verbessert wird, wenn Pseudomonas frühzeitig eradiziert wird, oder wenn zumindest die Erregerlast durch inhalative oder orale Antibiotikadauertherapie niedrig gehalten wird, fehlen. Einzig für Makrolidantibiotika konnte eine Reduktion von Exazerbationen gezeigt werden. Allerdings könnte sich der Effekt dadurch erklären lassen, dass auch Patienten mit Bronchiektasen in die Studien aufgenommen wurden. Dies ist eine Patientengruppe, für die der Effekt einer Antibiotikadauertherapie belegt ist. Weitere Studien zu Prävention und Therapie der chronischen Pseudomonas-Besiedlung bei COPD sind dringend notwendig. Dabei sollte das Atemwegsmikrobiom, dessen Stabilität wahrscheinlich eine wesentliche Rolle für den Krankheitsverlauf spielt, als ein Studienendpunkt etabliert werden.

Schlüsselwörter

COPD Bronchiektasen Pseudomonas aeruginosa Therapie Makrolide 

Pseudomonas aeruginosa infections in chronic obstructive pulmonary disease

Role of long-term antibiotic treatment

Abstract

Chronic Pseudomonas aeruginosa colonization in the airways of patients with chronic obstructive pulmonary disease (COPD) is probably associated with increased mortality and morbidity and a faster progress of COPD, although this has not been conclusively proven by studies. Studies demonstrating an improvement in prognosis in COPD patients by early eradication of Pseudomonas or at least a reduction of the bacterial burden by either inhaled or oral antibiotic maintenance therapy, are missing. An impact on the exacerbation rate has only been shown for macrolide maintenance treatment; however, this effect could be explained by the inclusion of patients with bronchiectasis in the studies. This is a group of patients for whom the effect of this kind of antibiotic treatment is well known. Further studies on the prevention and treatment of chronic Pseudomonas colonization in COPD patients are urgently needed. The stability of the respiratory microbiome probably plays an essential role in the course of the disease and should be established as a study endpoint.

Keywords

COPD Bronchiectasis Pseudomonas aeruginosa Therapy Macrolides 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

G.G.U. Rohde und T. Welte geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Monso E (2017) Microbiome in chronic obstructive pulmonary disease. Ann Transl Med 5:251CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Murphy TF, Brauer AL, Eschberger K et al (2008) Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(8):853–860CrossRefPubMedGoogle Scholar
  3. 3.
    Gallego M, Pomares X, Espasa M et al (2014) Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors. BMC Pulm Med 14:103CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Desai H, Eschberger K, Wrona C et al (2014) Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 11:303–309CrossRefPubMedGoogle Scholar
  5. 5.
    Fernaays MM, Lesse AJ, Sethi S, Cai X, Murphy TF (2006) Differential genome contents of nontypeable Haemophilus influenzae strains from adults with chronic obstructive pulmonary disease. Infect Immun 74(6):3366–3374CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ferrer M, Ioanas M, Arancibia F, Marco MA, de la Bellacasa JP, Torres A (2005) Microbial airway colonization is associated with noninvasive ventilation failure in exacerbation of chronic obstructive pulmonary disease. Crit Care Med 33(9):2003–2009CrossRefPubMedGoogle Scholar
  7. 7.
    Miravitlles M, Marín A, Monsó E, Vilà S, de la Roza C, Hervás R, Esquinas C, García M, Millares L, Morera J, Torres A (2009) Efficacy of moxifloxacin in the treatment of bronchial colonisation in COPD. Eur Respir J 34(5):1066–1071CrossRefPubMedGoogle Scholar
  8. 8.
    Sethi S, Jones PW, Theron MS, Miravitlles M, Rubinstein E, Wedzicha JA, Wilson R, PULSE Study group (2010) Pulsed moxifloxacin for the prevention of exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Respir Res 11:10CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Albert RK, Connett J, Bailey WC et al (2011) Azithromycin for prevention of exacerbations of COPD. N Engl J Med 365:689–698CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Uzun S, Djamin RS, Kluytmans JA, Mulder PG, van’t Veer NE, Ermens AA, Pelle AJ, Hoogsteden HC, Aerts JG, van der Eerden MM (2014) Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2(5):361–368CrossRefPubMedGoogle Scholar
  11. 11.
    Lin X, Lu J, Yang M, Dong BR, Wu HM (2015) Macrolides for diffuse panbronchiolitis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007716.pub4 Google Scholar
  12. 12.
    Principi N, Blasi F, Esposito S (2015) Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 34(6):1071–1079CrossRefPubMedGoogle Scholar
  13. 13.
    Fan LC, Lu HW, Wei P, Ji XB, Liang S, Xu JF (2015) Effects of long-term use of macrolides in patients with non-cystic fibrosis bronchiectasis: a meta-analysis of randomized controlled trials. BMC Infect Dis 15:160CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R (2014) Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 143(2):225–245CrossRefPubMedGoogle Scholar
  15. 15.
    Han MK, Tayob N, Murray S, Dransfield MT, Washko G, Scanlon PD, Criner GJ, Casaburi R, Connett J, Lazarus SC, Albert R, Woodruff P, Martinez FJ (2014) Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med 189(12):1503–1508CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chalmers JD, Aliberti S, Polverino E, Vendrell M, Crichton M, Loebinger M, Dimakou K, Clifton I, van der Eerden M, Rohde G, Murris-Espin M, Masefield S, Gerada E, Shteinberg M, Ringshausen F, Haworth C, Boersma W, Rademacher J, Hill AT, Aksamit T, O’Donnell A, Morgan L, Milenkovic B, Tramma L, Neves J, Menendez R, Paggiaro P, Botnaru V, Skrgat S, Wilson R, Goeminne P, De Soyza A, Welte T, Torres A, Elborn JS, Blasi F (2016) The EMBARC European Bronchiectasis Registry: protocol for an international observational study. ERJ Open Res.  https://doi.org/10.1183/23120541.00081-2015 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rademacher J, de Roux A, Ringshausen FC (2015) PROGNOSIS—The PROspective German NOn-CF BronchiectaSIS Patient Registry. Pneumologie 69(7):391–393CrossRefPubMedGoogle Scholar
  18. 18.
    Polverino E et al (2017) European Respiratory Society (ERS) guidelines for the management of adult bronchiectasis. Eur Respir J 50(3)Google Scholar
  19. 19.
    Rademacher J, Pletz MW, Welte T (2010) Treatment of not-with cystic fibrosis associated forms bronchiectasis (non-CF bronchiectasis). Internist (Berl) 51:1510–1515CrossRefGoogle Scholar
  20. 20.
    Aliberti S, Lonni S, Dore S, McDonnell MJ, Goeminne PC, Dimakou K, Fardon TC, Rutherford R, Pesci A, Restrepo MI, Sotgiu G, Chalmers JD (2016) Clinical phenotypes in adult patients with bronchiectasis. Eur Respir J 47(4):1113–1122CrossRefPubMedGoogle Scholar
  21. 21.
    Murray MP, Govan JR, Doherty CJ et al (2011) A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 183:491–499CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson R, Welte T, Polverino E et al (2013) Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: a phase II randomised study. Eur Respir J 41:1107–1115CrossRefPubMedGoogle Scholar
  23. 23.
    Serisier DJ, Bilton D, De Soyza A et al (2013) Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax 68(9):812.  https://doi.org/10.1136/thoraxjnl-2013-203207 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Haworth C (2017) Inhaled liposomal ciprofloxacin in patients with Bronchiectasis and chronic pseudomonas aeruginosa infection: results from two parallel phase III trials (ORBIT-3 and ORBIT-4) . Abstract book. 2nd World Bronchiectasis Conference, Milano, S 56Google Scholar
  25. 25.
    Brodt AM, Stovold E, Zhang L (2014) Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 44(2):382–393CrossRefPubMedGoogle Scholar
  26. 26.
    de Denus S, O’Meara E, Desai AS, Claggett B, Lewis EF, Leclair G, Jutras M, Lavoie J, Solomon SD, Pitt B, Pfeffer MA, Rouleau JL (2017) Spironolactone metabolites in TOPCAT—new insights into regional variation. N Engl J Med 376(17):1690–1692CrossRefPubMedGoogle Scholar
  27. 27.
    Wong C, Jayaram L, Karalus N et al (2012) Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 380:660–667CrossRefPubMedGoogle Scholar
  28. 28.
    Altenburg J, de Graaff CS, Stienstra Y et al (2013) Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309:1251–1259CrossRefPubMedGoogle Scholar
  29. 29.
    Serisier DJ, Martin ML, McGuckin MA et al (2013) Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 309:1260–1267CrossRefPubMedGoogle Scholar
  30. 30.
    Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ (2014) The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial. Lancet Respir Med 2(12):988–996CrossRefPubMedGoogle Scholar
  31. 31.
    Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi S, Elliott WM, Cooper J, Sin DD, Lenburg ME, Spira A, Mohn WW, Hogg JC (2015) Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192(4):438–445CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mohan A, Sethi S (2014) The reliability and validity of patient-reported chronic obstructive pulmonary disease exacerbations. Curr Opin Pulm Med 20(2):146–152CrossRefPubMedGoogle Scholar
  33. 33.
    Ray WA, Murray KT, Hall K et al (2012) Azithromycin and the risk of cardiovascular death. N Engl J Med 366:1881–1890CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Pneumologie/Allergologie, Medizinische Klinik 1Universitätsklinikum Frankfurt, Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland
  2. 2.Klinik für PneumologieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations