Skip to main content
Log in

PCSK9-Inhibitoren

Aktuelle klinische Bedeutung

PCSK9 inhibitors

Current clinical relevance

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Hypercholesterinämien sind bekannte Risikofaktoren für kardiovaskuläre Erkrankungen. Obwohl Statine die kardiovaskuläre Morbidität und Mortalität gesenkt haben und weitere Therapieoptionen zur Verfügung stehen, werden die Therapieziele oft nicht erreicht. Bei sehr hohen Low-density-lipoprotein (LDL)-Cholesterin-Spiegeln und bei Unverträglichkeiten sind die etablierten Therapien oft nicht ausreichend effektiv oder können nicht in ausreichenden Dosen eingesetzt werden. Für diese Hochrisikopatienten werden zusätzliche Therapien benötigt.

Zielsetzung

Der Stellenwert der neuen Substanzklasse der proprotein convertase subtilisin/kexin type 9 (PCSK9)-Inhibitoren in der Therapie von Hypercholesterinämien wird auf Basis der aktuellen Datenlage und der deutschen Regularien dargestellt.

Datenlage

Zwei PCSK9-Inhibitoren, Evolocumab und Alirocumab, wurden 2015 zugelassen. Für beide Substanzen liegen Daten zu vielen verschiedenen Patientengruppen vor. Die signifikante Senkung von LDL-Cholesterin um 50–60 % und die sehr gute Verträglichkeit und Sicherheit auf Placeboniveau sind für beide PCSK9-Inhibitoren gezeigt. Nur bei der homozygoten familiären Hypercholesterinämie wirken sie nicht so effektiv. Die ersten Langzeitdaten und eine Bildgebungsstudie lassen erwarten, dass die Endpunktstudien die erwartete Senkung kardiovaskulärer Ereignisse zeigen werden. Langzeitstudien müssen die Sicherheit bestätigen. In Deutschland ist gesetzlich geregelt, bei welchen Patienten die PCSK9-Inhibitoren eingesetzt werden dürfen. Diese Vorgaben entsprechen weitgehend dem klinischen Vorgehen.

Schlussfolgerung

Die Datenlage wächst rasch, sodass die Grundlage für die Indikationsstellung immer besser wird. Die PCSK9-Inhibitoren werden unsere Möglichkeiten, Hochrisikopatienten optimal zu behandeln, deutlich verbessern.

Abstract

Background

Hypercholesterolemias are known risk factors for cardiovascular diseases. Although statins have reduced the cardiovascular morbidity and mortality and further therapeutic measures are available, treatment goals are often not achieved. In cases of very high levels of low-density lipoprotein (LDL) cholesterol or of intolerability, the established therapies are often not sufficiently effective or cannot be used in adequate doses. For these high-risk patients further treatment options are required.

Objectives

The current clinical relevance of the new substance class of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors for the treatment of hypercholesterolemias is presented on the basis of the available data and the German regulations.

Current data

The two PCSK9 inhibitors, evolocumab and alirocumab, were approved in 2015. Data from many different patient groups are available for both substances. The significant reduction of LDL cholesterol of 50–60% and the very good tolerability and safety profile (at placebo level) are shown for both substances. The PCSK9 inhibitors are not as effective only in homozygous familial hypercholesterolemia. The first long-term data and one imaging study raise hope that the endpoint trials will show the expected reduction in cardiovascular events. Long-term trials have to show the long-term safety. In Germany it is legally regulated which patients can be treated by PCSK9 inhibitors and these prerequisites are largely in accordance with clinical practice.

Conclusion

The body of evidence is rapidly increasing thereby facilitating the decision making when PCSK9 inhibitors could be used. The PCSK9 inhibitors will considerably improve the options for optimal treatment of high-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abifadel M, Varret M, Rabes JP et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  PubMed  Google Scholar 

  2. Food and Drug Administration Center for Drug Evaluation and Research (2015) The Endocrinologic and Metabolic Drugs Advisory Committee meeting, June 9, briefing document, Praluent (alirocumab) injection

    Google Scholar 

  3. Food and Drug Administration Center for Drug Evaluation and Research (2015) The Endocrinologic and Metabolic Drugs Advisory Committee meeting, June 10, briefing document, Repatha (evolocumab) injection

    Google Scholar 

  4. Scientific Steering Committee on behalf of the Simon Broome Register Group (1999) Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Atherosclerosis 142(1):105–112. doi:10.1016/s0021-9150(98)00200-7

    Article  Google Scholar 

  5. Baigent C, Keech A, Kearney PM et al (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    Article  CAS  PubMed  Google Scholar 

  6. Berge KE, Ose L, Leren TP (2006) Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 26:1094–1100

    Article  CAS  PubMed  Google Scholar 

  7. Gemeinsamer Bundesausschuss (2016) Arzneimittel-Richtlinie/Anlage III: Alirocumab

    Google Scholar 

  8. Gemeinsamer Bundesausschuss (2016) Arzneimittel-Richtlinie/Anlage III: Nummer 35a – Evolocumab

    Google Scholar 

  9. Gemeinsamer Bundesausschuss (2016) Nutzenbewertungsverfahren zum Wirkstoff Alirocumab

    Google Scholar 

  10. Gemeinsamer Bundesausschuss (2016) Nutzenbewertungsverfahren zum Wirkstoff Evolocumab

    Google Scholar 

  11. Gemeinsamer Bundesausschuss (2010) Richtlinie des Gemeinsamen Bundesausschusses zu Untersuchungs- und Behandlungsmethoden der vertragsärztlichen Versorgung. Bundesanzeiger 109:2561

    Google Scholar 

  12. Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397

    Article  CAS  PubMed  Google Scholar 

  13. Cholesterol Treatment Trialists Collaboration, Baigent C, Blackwell L et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  Google Scholar 

  14. Cohen JC, Boerwinkle E, Mosley TH Jr. et al (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  CAS  PubMed  Google Scholar 

  15. Cuchel M, Meagher EA, Du Toit Theron H et al (2013) Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381:40–46

    Article  CAS  PubMed  Google Scholar 

  16. Ference BA (2015) Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr Opin Lipidol 26:566–571

    Article  CAS  PubMed  Google Scholar 

  17. Gaudet D, Kereiakes DJ, Mckenney JM et al (2014) Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol 114:711–715

    Article  CAS  PubMed  Google Scholar 

  18. Kastelein JJ, Ginsberg HN, Langslet G et al (2015) ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J 36:2996–3003

    PubMed  PubMed Central  Google Scholar 

  19. Labonte P, Begley S, Guevin C et al (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50:17–24

    Article  CAS  PubMed  Google Scholar 

  20. Landmesser U, Chapman MJ, Farnier M et al (2016) European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur Heart J. doi:10.1093/eurheartj/ehw480

    Google Scholar 

  21. Levy E, Djoudi Ouadda BA, Spahis S et al (2013) PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227:297–306

    Article  CAS  PubMed  Google Scholar 

  22. Hokuriku-FH-LDL-Apheresis Study Group, Mabuchi H, Koizumi J, Shimizu M et al (1998) Long-term efficacy of low-density lipoprotein apheresis on coronary heart disease in familial hypercholesterolemia. Am J Cardiol 82:1489–1495

    Article  Google Scholar 

  23. Mayne J, Dewpura T, Raymond A et al (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moriarty PM, Parhofer KG, Babirak SP et al (2016) Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur Heart J. doi:10.1093/eurheartj/ehw388

    PubMed  PubMed Central  Google Scholar 

  25. Moriarty PM, Thompson PD, Cannon CP et al (2015) Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 9:758–769

    Article  PubMed  Google Scholar 

  26. Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. doi:10.1001/jama.2016.16951

    PubMed  Google Scholar 

  27. Pfizer (2016) Pfizer discontinues global development of bococizumab, its investigational PCSK9 inhibitor. http://www.pfizer.com/news/press-release/press-release-detail/pfizer_discontinues_global_development_of_bococizumab_its_investigational_pcsk9_inhibitor. Zugegriffen: 6. Dezember 2016

    Google Scholar 

  28. Piepoli MF, Hoes AW et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol 23:NP1–NP96

    Article  PubMed  Google Scholar 

  29. Poirier S, Mayer G, Benjannet S et al (2008) The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 283:2363–2372

    Article  CAS  PubMed  Google Scholar 

  30. Raal FJ, Honarpour N, Blom DJ et al (2015) Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385:341–350

    Article  CAS  PubMed  Google Scholar 

  31. Raal FJ, Stein EA, Dufour R et al (2015) PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 385:331–340

    Article  CAS  PubMed  Google Scholar 

  32. Robinson JG, Farnier M, Krempf M et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1489–1499

    Article  CAS  PubMed  Google Scholar 

  33. Roubtsova A, Munkonda MN, Awan Z et al (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31:785–791

    Article  CAS  PubMed  Google Scholar 

  34. Sabatine MS, Giugliano RP, Keech A et al (2016) Rationale and design of the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk trial. Am Heart J 173:94–101

    Article  CAS  PubMed  Google Scholar 

  35. Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz GG, Bessac L, Berdan LG et al (2014) Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J 168:682–689

    Article  CAS  PubMed  Google Scholar 

  37. Seidah NG, Awan Z, Chretien M et al (2014) PCSK9: a key modulator of cardiovascular health. Circ Res 114:1022–1036

    Article  CAS  PubMed  Google Scholar 

  38. Stein E (2001) Results of phase I/II clinical trials with ezetimibe, a novel selective cholesterol absorption inhibitor. Eur Heart J Suppl 3(Suppl E):E11–E1639

    Article  CAS  Google Scholar 

  39. Stein EA, Honarpour N, Wasserman SM et al (2013) Effect of the PCSK9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128:2113–2120

    Article  CAS  PubMed  Google Scholar 

  40. Stone NJ, Robinson JG, Lichtenstein AH et al (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 129:S1–S45

    Article  PubMed  Google Scholar 

  41. Stroes E, Colquhoun D, Sullivan D et al (2014) Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol 63:2541–2548

    Article  CAS  PubMed  Google Scholar 

  42. Stroes ES, Thompson PD, Corsini A et al (2015) Statin-associated muscle symptoms: impact on statin therapy−European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J 36:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Myocardial Infarction Genetics Consortium Investigators (2014) Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med 371:2072–2082

    Article  Google Scholar 

  44. Thompson GR (2008) Recommendations for the use of LDL apheresis. Atherosclerosis 198:247–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vogt.

Ethics declarations

Interessenkonflikt

A. Vogt hat Honorare oder Unterstützungen für Vorträge, Beratertätigkeiten, Studientätigkeiten oder Reisekosten erhalten, u. a. von: Aegerion, Amgen, D•A•CH-Gesellschaft Prävention von Herz-Kreislauf-Erkrankungen e. V., Deutsche Gesellschaft zur Bekämpfung von Fettstoffwechselstörungen und ihren Folgeerkrankungen DGFF (Lipid-Liga) e. V., Fresenius, Genzyme a Sanofi company, Kaneka, Merck Sharp & Dohme, Sanofi-Aventis.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, A. PCSK9-Inhibitoren. Internist 58, 196–201 (2017). https://doi.org/10.1007/s00108-016-0179-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-016-0179-7

Schlüsselwörter

Keywords

Navigation