Advertisement

Der Internist

, Volume 57, Issue 12, pp 1182–1190 | Cite as

Clostridium-difficile-Infektion

Was ist gesichert in der Therapie?
  • A. StallmachEmail author
Schwerpunkt: Was ist gesichert in der Therapie?

Zusammenfassung

Clostridium difficile (C. difficile) ist in seiner Sporenform umweltresistent, wird fäkal-oral übertragen und ist bei 1–3 % der gesunden Bevölkerung nachzuweisen. Die durch C. difficile verursachten Krankheitsbilder reichen von der unkomplizierten Diarrhö bis hin zum toxischen Megakolon. Die Inzidenz, die Rezidivhäufigkeit, aber auch die Mortalität der C.-difficile-Infektionen (CDI) haben in den letzten Dekaden deutlich zugenommen. Der wichtigste Risikofaktor ist eine antibiotische Therapie bei älteren Patienten und Patienten mit schweren Komorbiditäten. Mit dem Nachweis der C. - difficile-spezifischen Glutamat-Dehydrogenase (GDH), die sowohl von toxigenen als auch von nichttoxigenen Stämmen produziert wird, ist ein Screening-Test etabliert. Bestätigt wird die CDI durch Nachweis der Toxine in einer frischen, breiig-flüssigen Stuhlprobe mithilfe der Polymerase-Kettenreaktion oder eines enzymgekoppelten Immunadsorptionstests. Mit Nachweis der CDI sollte eine laufende antibiotische Therapie beendet werden. Für die Therapie milder Verläufe wird Metronidazol empfohlen, bei schwerer Krankheitsausprägung Vancomycin. Im Falle eines Rezidivs (10–25 % der Patienten) sollte die Behandlung mit Vancomycin oder Fidaxomicin erfolgen. Eine Therapieoption bei mehreren Rezidiven ist der fäkale Mikrobiomtransfer (FMT). Die Heilungsrate nach FMT liegt bei etwa 80 %. Problematisch bleibt die Behandlung der schweren, komplizierten CDI mit einem drohenden toxischen Megakolon. Der Evidenzgrad für eine medikamentöse Therapie in dieser Situation ist niedrig; die Wertigkeit von Metronidazol i. v. als additive Therapie ist umstritten. Tigecyclin i. v. ist eine alternative Option. Bei Patienten mit einem toxischen Megakolon oder einem akuten Abdomen muss eine operative Versorgung diskutiert werden.

Schlüsselwörter

Infektiöse Gastroenteritis Nosokomiale Infektion Diarrhö Toxisches Megakolon Glutamat-Dehydrogenase 

Clostridium difficile infection

What is currently available for treatment?

Abstract

Clostridium difficile (C. difficile) is an anaerobic, Gram-positive, spore-forming, toxin-secreting bacillus. It is transmitted via a fecal–oral route and can be found in 1–3 % of the healthy population. Symptoms caused by C. difficile range from uncomplicated diarrhea to a toxic megacolon. The incidence, frequency of recurrence, and mortality rate of C. difficile infections (CDIs) have increased significantly over the past few decades. The most important risk factor is antibiotic treatment in elderly patients and patients with severe comorbidities. There is a screening test available to detect C. difficile-specific glutamate dehydrogenase (GDH), which is produced by both toxigenic and non-toxigenic strains. To confirm CDIs, it is necessary to test for toxins in a fresh, liquid stool sample via polymerase chain reaction or an enzyme-coupled immune adsorption test. If CDIs are diagnosed, then ongoing antibiotic treatment should be ended. Metronidazole is used to treat mild cases, and vancomycin is recommended for severe cases. Vancomycin or fidaxomicin should be used to treat recurrences (10–25 % of patients). In cases with several recurrences, a treatment option is fecal microbiome transfer (FMT). The cure rate following FMT is approximately 80 %. The treatment of severe and complicated CDI with a threatening toxic megacolon remains problematic. The degree of evidence of medicated treatment in this situation is low; the significance of metronidazole i. v. as an additional therapeutic measure is controversial. Tigecycline i. v. is an alternative option. Surgical treatment must be considered in patients with a toxic megacolon or an acute abdomen.

Keywords

Gastroenteritis, infectious Hospital-acquired infection Diarrhea Toxic megacolon Glutamate dehydrogenase 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Stallmach erhielt von folgenden Firmen Beratungshonorare bzw. Vortragshonorare: Astellas, MSD, Summit Therapeutic.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abou Chakra CN, Pepin J, Sirard S et al (2014) Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PLOS ONE 9:e98400CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bartlett JG (2006) Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 145:758–764CrossRefPubMedGoogle Scholar
  3. 3.
    Bartlett JG, Onderdonk AB, Cisneros RL et al (1977) Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 136:701–705CrossRefPubMedGoogle Scholar
  4. 4.
    Britt NS, Steed ME, Potter EM et al (2014) Tigecycline for the treatment of severe and severe complicated Clostridium difficile infection. Infect Dis Ther 3:321–331CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Buffie CG, Bucci V, Stein RR et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng JW, Xiao M, Kudinha T et al (2015) The role of Glutamate Dehydrogenase (GDH) testing assay in the diagnosis of Clostridium difficile infections: a high sensitive screening test and an essential step in the proposed laboratory diagnosis workflow for developing countries like China. PLOS ONE 10:e0144604CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cornely OA, Crook DW, Esposito R et al (2012) Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis 12:281–289CrossRefPubMedGoogle Scholar
  8. 8.
    Debast SB, Bauer MP, Sanders IM et al (2013) Antimicrobial activity of LFF571 and three treatment agents against Clostridium difficile isolates collected for a pan-European survey in 2008: clinical and therapeutic implications. J Antimicrob Chemother 68:1305–1311CrossRefPubMedGoogle Scholar
  9. 9.
    di Bella S, Nisii C, Petrosillo N (2015) Is tigecycline a suitable option for Clostridium difficile infection? Evidence from the literature. Int J Antimicrob Agents 46:8–12CrossRefPubMedGoogle Scholar
  10. 10.
    Erikstrup LT, Aarup M, Hagemann-Madsen R et al (2015) Treatment of Clostridium difficile infection in mice with vancomycin alone is as effective as treatment with vancomycin and metronidazole in combination. BMJ Open Gastroenterol 2:e000038CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fernandez A, Anand G, Friedenberg F (2004) Factors associated with failure of metronidazole in Clostridium difficile-associated disease. J Clin Gastroenterol 38:414–418CrossRefPubMedGoogle Scholar
  12. 12.
    Furuya-Kanamori L, Doi SA, Paterson DL et al (2016) Upper versus lower gastrointestinal delivery for transplantation of fecal microbiota in recurrent or refractory Clostridium difficile infection: a collaborative analysis of individual patient data from 14 studies. J Clin Gastroenterol. doi: 10.1097/mcg.0000000000000511 PubMedGoogle Scholar
  13. 13.
    Garey KW, Jiang ZD, Ghantoji S et al (2010) A common polymorphism in the interleukin-8 gene promoter is associated with an increased risk for recurrent Clostridium difficile infection. Clin Infect Dis 51:1406–1410CrossRefPubMedGoogle Scholar
  14. 14.
    Goudarzi M, Seyedjavadi SS, Goudarzi H et al (2014) Clostridium difficile infection: epidemiology, pathogenesis, risk factors, and therapeutic options. Scientifica (Cairo) 2014:916826Google Scholar
  15. 15.
    Hagel S, Epple HJ, Feurle GE et al (2015) S2k-guideline gastrointestinal infectious diseases and Whipple’s disease. Z Gastroenterol 53:418–459CrossRefPubMedGoogle Scholar
  16. 16.
    Hagel S, Fischer A, Ehlermann P et al (2016) Fecal microbiota transplant in patients with recurrent Clostridium difficile infection – a retrospective multicenter observational study from the MicroTrans registry. Dtsch Arztebl Int 113:583–539PubMedGoogle Scholar
  17. 17.
    Hasegawa M, Yamazaki T, Kamada N et al (2011) Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J Immunol 186:4872–4880CrossRefPubMedGoogle Scholar
  18. 18.
    Huang AM, Marini BL, Frame D et al (2014) Risk factors for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 16:744–750CrossRefPubMedGoogle Scholar
  19. 19.
    Jarchum I, Liu M, Shi C et al (2012) Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect Immun 80:2989–2996CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Johnson S, Louie TJ, Gerding DN et al (2014) Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 59:345–354CrossRefPubMedGoogle Scholar
  21. 21.
    Kelly CP, Pothoulakis C, LaMont JT (1994) Clostridium difficile colitis. N Engl J Med 330:257–262CrossRefPubMedGoogle Scholar
  22. 22.
    Khanafer N, Barbut F, Eckert C et al (2016) Factors predictive of severe Clostridium difficile infection depend on the definition used. Anaerobe 37:43–48CrossRefPubMedGoogle Scholar
  23. 23.
    Knafl D, Winhofer Y, Lotsch F et al (2016) Tigecycline as last resort in severe refractory Clostridium difficile infection: a case report. J Hosp Infect 92:296–298CrossRefPubMedGoogle Scholar
  24. 24.
    Lamont T (2015) Clostridium difficile in adults: Epidemiology, microbiology, and pathophysiology., vol 2015. UpToDate. http://www.uptodate.com/contents/clostridium-difficile-in-adults-epidemiology-microbiology-and-pathophysiology. Zugegriffen: 13.10.2016Google Scholar
  25. 25.
    Lessa FC, Mu Y, Bamberg WM et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834CrossRefPubMedGoogle Scholar
  26. 26.
    Li R, Lu L, Lin Y et al (2015) Efficacy and safety of metronidazole monotherapy versus vancomycin monotherapy or combination therapy in patients with Clostridium difficile infection: a systematic review and meta-analysis. PLOS ONE 10:e0137252CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Louie TJ, Miller MA, Mullane KM et al (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431CrossRefPubMedGoogle Scholar
  28. 28.
    Lübbert C, John E, von Müller L (2014) Clostridium-difficile-Infektion: Leitliniengerechte Diagnostik- und Behandlungsoptionen. Dtsch Arztebl Int 111:723–731PubMedPubMedCentralGoogle Scholar
  29. 29.
    Luo R, Greenberg A, Stone CD (2015) Outcomes of Clostridium difficile infection in hospitalized leukemia patients: a nationwide analysis. Infect Control Hosp Epidemiol 36:794–801CrossRefPubMedGoogle Scholar
  30. 30.
    Lynen Jansen P, Stallmach A, Lohse AW et al (2014) Development of gastrointestinal infectious diseases between 2000 and 2012. Z Gastroenterol 52:549–557CrossRefPubMedGoogle Scholar
  31. 31.
    McFarland LV (2016) Therapies on the horizon for Clostridium difficile infections. Expert Opin Investig Drugs 25:541–555CrossRefPubMedGoogle Scholar
  32. 32.
    Merrigan MM, Sambol SP, Johnson S et al (2003) Prevention of fatal Clostridium difficile-associated disease during continuous administration of clindamycin in hamsters. J Infect Dis 188:1922–1927CrossRefPubMedGoogle Scholar
  33. 33.
    Olsen MA, Young-Xu Y, Stwalley D et al (2016) The burden of clostridium difficile infection: estimates of the incidence of CDI from U.S. Administrative databases. BMC Infect Dis 16:177CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Polage CR, Gyorke CE, Kennedy MA et al (2015) Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med 175:1792–1801CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Robert Koch-Institut (2016) Clostridium difficile. RKI-Ratgeber für Ärzte https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Clostridium.html. Zugegriffen: 13.10.2016
  36. 36.
    Rokas KE, Johnson JW, Beardsley JR et al (2015) The addition of intravenous metronidazole to oral vancomycin is associated with improved mortality in critically ill patients with Clostridium difficile infection. Clin Infect Dis 61:934–941CrossRefPubMedGoogle Scholar
  37. 37.
    Shimizu H, Mori M, Yoshimoto N (2015) Clostridium difficile infection is more severe when toxin is detected in the stool than when detected only by a toxigenic culture. Intern Med 54:2155–2159CrossRefPubMedGoogle Scholar
  38. 38.
    Slayton ET, Hay AS, Babcock CK et al (2016) New antibiotics in clinical trials for Clostridium difficile. Expert Rev Anti Infect Ther 14:789–800. doi: 10.1080/14787210.2016.1211931 CrossRefGoogle Scholar
  39. 39.
    Solomon K, Martin AJ, O’Donoghue C et al (2013) Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. J Med Microbiol 62:1453–1460CrossRefPubMedGoogle Scholar
  40. 40.
    Sorg JA, Sonenshein AL (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192:4983–4990CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498 (quiz 499)CrossRefPubMedGoogle Scholar
  42. 42.
    van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie und Infektiologie), Universitätsklinikum JenaFriedrich-Schiller-Universität JenaJenaDeutschland

Personalised recommendations