Skip to main content
Log in

Targeted Therapy und Precision Medicine

Mehr als nur Schlagworte in der Therapie von Lungenkarzinomen

Targeted therapy and precision medicine

More than just words in the treatment of lung cancer

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Ein Anteil von 10 bis 15 % der nichtkleinzelligen Lungenkarzinome (NSCLC) proliferiert auf der Basis einer sogenannten Treibermutation. Diese molekulare Alteration hält das maligne Potenzial aufrecht und ist gezielt blockierbar. Neben Mutationen in EGFR, dem Gen des „epidermal growth factor receptor“, betrifft dies Translokationen zwischen den Genen des „echinoderm microtubule-associated protein-like 4“ (EML4) und der anaplastischen Lymphomkinase (ALK) sowie die Alteration im ROS1-Gen. Für die ersten beiden Alterationen stehen mittlerweile mehrere Generationen von Inhibitoren zur Verfügung. Für ROS1 und weitere Treibermutationen ist die Datenlage zurzeit noch recht spärlich, da sie beim NSCLC sehr selten vorkommen.

Abstract

Between 10 and 15 % of non-small cell lung cancers (NSCLC) proliferate due to the presence of a so-called driver mutation. This molecular alteration allows the cancer to continue to proliferate and can be deliberately inhibited. In addition to mutations in the epidermal growth factor receptor gene (EGFR) and translocations between the echinoderm microtubule-associated protein-like 4 gene (EML 4) and the anaplastic lymphoma kinase gene (ALK), this applies to ROS1 gene translocations. For the former two alterations, many inhibitors are already available, whereas for ROS1 and other driving mutations the evidence is sparse due to the rare occurrence of these mutations in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Barlesi F, Mazieres J, Merlio JP et al (2016) Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1‑year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 387:1415–1426

    Article  CAS  PubMed  Google Scholar 

  2. Cross DA, Ashton SE, Ghiorghiu S et al (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elleraas J, Ewanicki J, Johnson TW et al (2016) Conformational studies and atropisomerism kinetics of the ALK clinical candidate lorlatinib (PF-06463922) and desmethyl congeners. Angew Chem Int Ed Engl 55:3590–3595

    Article  CAS  PubMed  Google Scholar 

  4. Felip E, Crino L, Kim DW et al (2016) 141PD: Whole body and intracranial efficacy of ceritinib in patients (pts) with crizotinib (CRZ) pretreated, ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) and baseline brain metastases (BM): results from ASCEND-1 and ASCEND-2 trials. J Thorac Oncol 11:S118–119

    Article  CAS  PubMed  Google Scholar 

  5. Fenizia F, De Luca A, Pasquale R et al (2015) EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Future Oncol 11:1611–1623

    Article  CAS  PubMed  Google Scholar 

  6. Friboulet L, Li N, Katayama R et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4:662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gadgeel SM, Gandhi L, Riely GJ et al (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15:1119–1128

    Article  CAS  PubMed  Google Scholar 

  8. Heigener DF, Schumann C, Sebastian M et al (2015) Afatinib in non-small cell lung cancer harboring uncommon EGFR mutations pretreated with reversible EGFR inhibitors. Oncologist 20:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janne PA, Ou SH, Kim DW et al (2014) Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: a multicentre, open-label, phase 2 trial. Lancet Oncol 15:1433–1441

    Article  CAS  PubMed  Google Scholar 

  10. Janne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689–1699

    Article  PubMed  Google Scholar 

  11. Katayama R, Sakashita T, Yanagitani N et al (2016) P‑glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine 3:54–66

    Article  PubMed  Google Scholar 

  12. Kim DW, Kim SW, Kim TM et al (2013) Phase I study of HM61713, a novel epidermal growth factor receptor (EGFR) mutant selective inhibitor, in non-small cell lung cancer (NSCLC) patients having an activating EGFR mutation but failed to prior EGFR tyrosine kinase inhibitor (TKI) therapy. 15th World Conference on Lung Cancer (WCLC), Abstract 1048, Poster P2.11–010, Sydney.

    Google Scholar 

  13. Kim DW, Mehra R, Tan DS et al (2016) Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol 17:452–463

    Article  CAS  PubMed  Google Scholar 

  14. Kim DW, Tiseo M, Ahn MJ et al (2016) Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): first report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA). J Clin Oncol 34:7s (Suppl March 1; Abstr. 9007)

    Google Scholar 

  15. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee C, Davies LC, Wu YW et al (2015) The impact on overall survival (OS) of first-line gefitinib (G) and erlotinib (E) and of clinical factors in advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor mutations (EGFR mut) based on meta-analysis of 1,231 patients (pts) enrolled in 6 major randomized trials. J Clin Oncol 33:15s (Suppl May 18; Abstr. 8072)

    Google Scholar 

  17. Lee J, Park K, Han J et al (2015) Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC. In: ESMO Asia. ESMO, Singapore

    Google Scholar 

  18. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  19. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  20. Niederst MJ, Sequist LV, Poirier JT et al (2015) RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 6:6377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nokihara H, Hida T, Kondo M et al (2016) Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): primary results from the J‑ALEX study. J Clin Oncol 34:7s (Suppl March 1; Abstr. 9008)

    Google Scholar 

  22. Park K, Tan EH, Zhang L et al (2015) Afatinib versus gefitinib as first-line treatment for patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Lux-Lung 7. In: ESMO ASIA. ESMO, Singapore

    Google Scholar 

  23. Pecuchet N, Legras A, Laurent-Puig P et al (2016) Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA. Ann Pathol 36:80–93

    Article  PubMed  Google Scholar 

  24. Ramalingam SS, Janne PA, Mok T et al (2014) Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): a randomised, double-blind, phase 3 trial. Lancet Oncol 15:1369–1378

    Article  CAS  PubMed  Google Scholar 

  25. Reck M, Heigener DF, Mok T et al (2013) Management of non-small-cell lung cancer: recent developments. Lancet 382:709–719

    Article  CAS  PubMed  Google Scholar 

  26. Rosell R, Gettinger SN, Bazhenova LA et al (2016) 1330: Brigatinib efficacy and safety in patients (Pts) with anaplastic lymphoma kinase (ALK)-positive (ALK+) non-small cell lung cancer (NSCLC) in a phase 1/2 trial. J Thorac Oncol 11:S114

    Article  CAS  PubMed  Google Scholar 

  27. Sequist LV, Waltman BA, Dias-Santagata D et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Article  CAS  PubMed  Google Scholar 

  29. Seto T, Kato T, Nishio M et al (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 15:1236–1244

    Article  CAS  PubMed  Google Scholar 

  30. Shaw AT, Friboulet L, Leshchiner I et al (2016) Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med 374:54–61

    Article  CAS  PubMed  Google Scholar 

  31. Shaw AT, Kim DW, Mehra R et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370:1189–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith GD, Chadwick BE, Willmore-Payne C et al (2008) Detection of epidermal growth factor receptor gene mutations in cytology specimens from patients with non-small cell lung cancer utilising high-resolution melting amplicon analysis. J Clin Pathol 61:487–493

    Article  CAS  PubMed  Google Scholar 

  33. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  34. Sullivan I, Planchard D (2016) Treatment modalities for advanced ALK-rearranged non-small-cell lung cancer. Future Oncol 12:945–961

    Article  CAS  PubMed  Google Scholar 

  35. Von Laffert M, Schirmacher P, Warth A et al (2016) Statement of the German Society for Pathology and the working group thoracic oncology of the working group oncology/German Cancer Society on ALK testing in NSCLC : Immunohistochemistry and/or FISH? Pathologe 37:187–192

    Article  Google Scholar 

  36. Walter AO, Sjin RT, Haringsma HJ et al (2013) Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 3:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu J, Savooji J, Liu D (2016) Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu YL, Zhou C, Hu CP et al (2014) Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol 15:213–222

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Sequist L, Schuler M et al (2014) Overall survival (OS) in patients (pts) with advanced non-small cell lung cancer (NSCLC) harboring common (Del19/L858R) epidermal growth factor receptor mutations (EGFR mut): Pooled analysis of two large open-label phase III studies (LUX-Lung 3 [LL3] and LUX-Lung 6 [LL6]) comparing afatinib with chemotherapy (CT). J Clin Oncol 32:5s (Suppl May 20; Abstr. 8004)

    Article  Google Scholar 

  40. Yang JC, Sequist LV, Geater SL et al (2015) Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16:830–838

    Article  CAS  PubMed  Google Scholar 

  41. Yang JC, Shih JY, Su WC et al (2012) Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 13:539–548

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Heigener.

Ethics declarations

Interessenkonflikt

D.F. Heigener und M. Reck erhielten Honorare für Vorträge und für das Mitwirken an Advisory Boards sowie Reisekostenerstattungen von Hoffmann-La Roche, Boehringer Ingelheim, Pfizer, Novartis, AstraZeneca, MSD und Bristol-Myers Squibb. M. Horn gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heigener, D.F., Horn, M. & Reck, M. Targeted Therapy und Precision Medicine. Internist 57, 1243–1249 (2016). https://doi.org/10.1007/s00108-016-0121-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-016-0121-z

Schlüsselwörter

Keywords

Navigation