Skip to main content
Log in

Zystische Fibrose und ihre Komplikationen

Cystic fibrosis and associated complications

  • CME Zertifizierte Fortbildung
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die zystische Fibrose (CF) – auch Mukoviszidose genannt – ist eine autosomal-rezessiv vererbte Stoffwechselkrankheit. Die Mutation befindet sich auf dem langen Arm von Chromosom 7. Durch einen Defekt im Cystic-fibrosis-transmembrane-conductance-regulator(CFTR)-Gen ist der Chloridionentransport an der Zellmembran verringert. In der Folge lässt sich ein Krankheitsbild beschreiben, dass auch als Exokrinopathie bezeichnet werden kann. In allen Organen mit exokrinen Drüsen treten Störungen im Zusammenhang mit dem defekten Chloridtransport auf. Am stärksten betroffen ist die Lunge. Die häufigste Todesursache ist demnach auch die pulmonale Erkrankung mit einer respiratorischen Insuffizienz auf dem Boden der rezidivierenden Infekte. Die Erkrankung ist bis heute nicht heilbar. Neue Therapien, die mutationsspezifisch CFTR beeinflussen, geben aber Anlass zu neuer Hoffnung. Langfristig soll für jede der 6 Mutationsklassen und damit für etwa 2000 Mutationen eine kausale Therapie entwickelt werden.

Abstract

Cystic fibrosis (CF) is an autosomal recessive inherited metabolic disease. The mutation is located on the long arm of chromosome 7. Due to a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, chloride ion transport is reduced across the cell membrane. As a result, the disease can be described as an exocrinopathy. In all organs with exocrine glands, disorders occur in association with the defective chloride transport. The main impact of this defect is manifested in the lungs. Therefore, the most common cause of death is pulmonary disease with respiratory insufficiency due to recurrent infections. Unfortunately, a cure for the disease is still not available. However, new therapies that may affect the CFTR mutation more specifically give new hope for better therapeutic options in the future. The long-term goal of therapy is to develop a causal therapy for all six different mutation classes and thus for about 2000 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Schwarz C (2013) Arzneimitteltherapie der zystischen Fibrose (Mukoviszidose). Arzneimitteltherapie 31:80–88

    CAS  Google Scholar 

  2. o A (2010) Cystic Fibrosis Foundation patient registry 2009 annual data report. Cystic Fibrosis Foundation, Bethesda

  3. De Boeck K, Derichs N, Fajac I et al (2011) New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros 10:53–66

  4. Will K, Reiss J, Dean M et al (1993) CFTR transcripts are undetectable in lymphocytes and respiratory epithelial cells of a CF patient homozygous for the nonsense mutation R553X. J Med Genet 30:833–837

  5. Denning GM, Anderson MP, Amara JF et al (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  CAS  PubMed  Google Scholar 

  6. Bompadre SG, Li M, Hwang TC (2008) Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. J Biol Chem 283:5364–5369

  7. Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807

    Article  CAS  PubMed  Google Scholar 

  8. Anderson P (2010) Emerging therapies in cystic fibrosis. Ther Adv Respir Dis 4:177–185

    Article  CAS  PubMed  Google Scholar 

  9. Von der Hardt H, Schwarz C, Ullrich G (2012) Erwachsene mit Mukoviszidose. Es geht um mehr als die Lebensdauer. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55:558–567

    Article  Google Scholar 

  10. Konstan MW, Berger M (1997) Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 24:137–142

    Article  CAS  PubMed  Google Scholar 

  11. Ratjen F, Hartog CM, Paul K (2002) Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax 57:930–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kirchner KK, Wagener JS, Khan TZ (1996) Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 154:1426–1429

    Article  CAS  PubMed  Google Scholar 

  13. Emerson J, Rosenfeld M, McNamara S et al (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100

    Article  PubMed  Google Scholar 

  14. Rosenfeld M, Gibson RL, McNamara S et al (2001) Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 32:356–366

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs HJ, Borowitz DS, Christiansen DH et al (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 331:637–642

  16. Flume PA, O’Sullivan BP, Robinson KA et al (2007) Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 176:957–969

    Article  CAS  PubMed  Google Scholar 

  17. Bilton D, Robinson P, Cooper P et al; CF301 Study Investigators (2011) Inhaled dry powder mannitol in cystic fibrosis: an efficacy and safety study. Eur Respir J 38(5):1071–1080

    Article  Google Scholar 

  18. Ratjen F, Rietschel E, Griese M et al (2000) Fractional analysis of bronchoalveolar lavage fluid cytology in cystic fibrosis patients with normal lung function. Bronchoalveolar lavage for the evaluation of anti-inflammatory treatment (BEAT) study group. Eur Respir J 15(1):141–145

    Article  CAS  PubMed  Google Scholar 

  19. Sawicki GS, Signorovitch JE, Zhang J et al (2012) Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution. Pediatr Pulmonol 47(1):44–52

    Article  PubMed  Google Scholar 

  20. Wilms EB, Touw DJ, Heijerman HG et al (2012) Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol 47(7):658–665

    Article  PubMed  Google Scholar 

  21. Flume PA, Van Devanter DR (2012) State of progress in treating cystic fibrosis respiratory disease. BMC Med 10:88

    Article  PubMed Central  PubMed  Google Scholar 

  22. Konstan MW, Byard PJ, Hoppel CL (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 332(13):848–854

  23. Tramper-Stranders GA, Ent CK van der, Molin S et al (2012) Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolates. Clin Microbiol Infect 18:567–574

    Article  CAS  PubMed  Google Scholar 

  24. Smyth A (2005) Prophylactic antibiotics in cystic fibrosis: a conviction without evidence? Pediatr Pulmonol 40(6):471–476

    Article  PubMed  Google Scholar 

  25. S3-Leitlinie „Lungenerkrankung bei Mukoviszidose. Modul 1: Diagnostik und Therapie nach dem ersten Nachweis von Pseudomonas aeruginosa“. http://www.awmf.org/uploads/tx_szleitlinien/026-022l_S3_Lungenerkrankung_bei_Mukoviszidose_Modul_1_2013-06_01.pdf

  26. Roehmel JF, Schwarz C, Mehl A et al (2014) Hypersensitivity to antibiotics in patients with cystic fibrosis. J Cyst Fibros 13(2):205–211

  27. Halfhide C, Evans HJ, Couriel J (2005) Inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev 4:CD003428. http://www. cochrane.org/reviews/clibintro.htm. Zugegriffen: September 2007

  28. Ramsey BW et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

  29. http://www.muko.info/fileadmin/redaction/datei_gruppen/muko_institut/Qualitaetssicherung_Internet.pdf

  30. Stevens DA, Moss RB, Kurup VP et al (2003) Allergic bronchopulmonary aspergillosis in cystic fibrosis—state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 37(Suppl 3):S225–S264

    Article  PubMed  Google Scholar 

  31. Tanou K, Zintzaras E, Kaditis AG (2014) Omalizumab therapy for allergic bronchopulmonary aspergillosis in children with cystic fibrosis: a synthesis of published evidence. Pediatr Pulmonol 49:503–507

    Article  PubMed  Google Scholar 

  32. Fauroux B (2011) Why, when and how to propose noninvasive ventilation in cystic fibrosis? Minerva Anesthesiol 77:1108–1114

    CAS  Google Scholar 

  33. Cornalba GP, Vella A, Barbosa F et al (2013) Bronchial and nonbronchial systemic artery embolization in managing haemoptysis: 31 years of experience. Radiol Med 118:1171–1183

    Article  CAS  PubMed  Google Scholar 

  34. Flume PA, Strange C, Ye X et al (2005) Pneumothorax in cystic fibrosis. Chest 128:720–728

    Article  PubMed  Google Scholar 

  35. Cystic Fibrosis Foundation (2012) http://www.cff.org/UploadedFiles/research/ClinicalResearch/PatientRegistryReport/2012-CFF-Patient-Registry.pdf

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Schwarz und D. Staab haben von Forest, Gilead, Novartis, Pharmaxis und Vertex Honorare für Berater- und Vortragstätigkeiten erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, C., Staab, D. Zystische Fibrose und ihre Komplikationen. Internist 56, 263–274 (2015). https://doi.org/10.1007/s00108-014-3646-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3646-z

Schlüsselwörter

Keywords

Navigation