Skip to main content
Log in

Pathophysiologie der Hypertonie

Was sind unsere aktuellen Vorstellungen?

Pathophysiology of hypertension

What are our current concepts?

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Pathophysiologie der essenziellen arteriellen Hypertonie lässt auch im Jahr 2015 viele Fragen offen. In diversen Bereichen der Medizin wurden mithilfe neuer molekularer „Omics“-Techniken erhebliche wissenschaftliche Fortschritte erzielt, die dann in neue diagnostische und therapeutische Verfahren einfließen konnten. Im Bereich der Hypertonieforschung wurden diese Methoden im Rahmen sehr großer Kohorten eingesetzt, haben jedoch weniger als erwartet zum pathophysiologischen Verständnis oder klinischen Management beigetragen. Die in der vorliegenden Arbeit diskutierten Befunde zur pathophysiologischen Bedeutung von Baroreflexmechanismen, natriuretischen Peptiden und osmotisch inaktiver Natriumspeicherung haben eine Gemeinsamkeit: Alle beruhen auf Beobachtungen kleiner, sorgfältig durchgeführter systemphysiologischer Untersuchungen, deren Resultate oft nicht im Einklang mit der Lehrbuchmeinung stehen. Dennoch haben diese Befunde neue Forschungsfelder eröffnet und werden mit großer Wahrscheinlichkeit Eingang in die Klinik finden.

Abstract

In the year 2015, many questions regarding the pathophysiology of essential arterial hypertension remain unresolved. Substantial scientific progress has been made in various medical areas aided by novel molecular“omics” techniques. The findings could then be implemented in diagnostic and therapeutic procedures. In the field of hypertension research such methods have been applied in very large cohorts but have contributed less to pathophysiological understanding and clinical management than expected. The findings on the pathophysiological importance of baroreflex mechanisms, natriuretic peptides and osmotically inactive sodium storage discussed in this article all have something in common: all are based on small, carefully conducted human physiological investigations and often challenge current textbook knowledge. Nevertheless, these findings have opened up new research fields and are likely to affect clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Heusser K, Tank J, Luft FC, Jordan J (2005) Baroreflex failure. Hypertension 45:834–839

    Article  CAS  PubMed  Google Scholar 

  2. Robertson D (2008) The pathophysiology and diagnosis of orthostatic hypotension. Clin Auton Res 18(Suppl 1):2–7

    Article  PubMed  Google Scholar 

  3. Cowley AJ, Liard JF, Guyton AC (1973) Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res 32:564–576

    Article  PubMed  Google Scholar 

  4. Krieger EM (1964) Neurogenic hypertension in the rat. Circ Res 15:511–521

    Article  CAS  PubMed  Google Scholar 

  5. Thrasher TN (2002) Unloading arterial baroreceptors causes neurogenic hypertension. Am J Physiol Regul Integr Comp Physiol 282:R1044–R1053

    Article  CAS  PubMed  Google Scholar 

  6. Heusser K, Tank J, Engeli S et al (2010) Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55:619–626

    Article  CAS  PubMed  Google Scholar 

  7. Lohmeier TE, Irwin ED, Rossing MA et al (2004) Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43:306–311

    Article  CAS  PubMed  Google Scholar 

  8. Scheffers IJ, Kroon AA, Schmidli J et al (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56:1254–1258

  9. Bisognano JD, Bakris G, Nadim MK et al (2011) Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol 58:765–773

  10. Grassi G, Seravalle G, Colombo M et al (1998) Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 97:2037–2042

    Article  CAS  PubMed  Google Scholar 

  11. Tank J, Diedrich A, Szczech E et al (2004) Alpha-2 adrenergic transmission and human baroreflex regulation. Hypertension 43:1035–1041

    Article  CAS  PubMed  Google Scholar 

  12. Ligtenberg G, Blankestijn PJ, Oey L et al (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340:1321–1328

  13. Matsukawa N, Grzesik WJ, Takahashi N et al (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A 96:7403–7408

    Article  Google Scholar 

  14. Charles CJ, Espiner EA, Nicholls MG et al (1996) Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol 271:R373–R380

    CAS  PubMed  Google Scholar 

  15. Sengenès C, Berlan M, De Glisezinski I et al (2000) Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 14:1345–1351

    Article  Google Scholar 

  16. Birkenfeld AL, Boschmann M, Moro C et al (o J) Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab 90:3622–3628

  17. Birkenfeld AL, Budziarek P, Boschmann M et al (2005) Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57:3199–3204

    Article  Google Scholar 

  18. Engeli S, Birkenfeld AL, Badin PM et al (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 122:4675–4679

  19. Magnusson M, Jujic A, Hedblad B et al (2012) Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J Clin Endocrinol Metab 97:638–645

  20. Moro C, Crampes F, Sengenes C et al (2004) Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J 18:908–910

    Google Scholar 

  21. Schlueter N, Sterke A de, Willmes DM et al (2014) Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther 144:12–27

    Article  CAS  PubMed  Google Scholar 

  22. Heer M, Baisch F, Kropp J et al (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 278:F585–F595

    CAS  PubMed  Google Scholar 

  23. Titze J, Krause H, Hecht H et al (2002) Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol 283:F134–F141

    Article  CAS  PubMed  Google Scholar 

  24. Titze J, Lang R, Ilies C et al (2003) Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol 285:F1108–F1117

    Article  CAS  PubMed  Google Scholar 

  25. Titze J, Shakibaei M, Schafflhuber M et al (2004) Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 287:H203–H208

    Article  CAS  PubMed  Google Scholar 

  26. Heer M, Frings-Meuthen P, Titze J et al (2009) Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br J Nutr 101:1286–1294

    Article  CAS  PubMed  Google Scholar 

  27. Machnik A, Neuhofer W, Jantsch J et al (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552

    Article  CAS  PubMed  Google Scholar 

  28. Wiig H, Schroder A, Neuhofer W et al (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123:2803–2815

  29. Machnik A, Dahlmann A, Kopp C et al (2010) Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55:755–761

    Article  CAS  PubMed  Google Scholar 

  30. Kleinewietfeld M, Manzel A, Titze J et al (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Rakova N, Juttner K, Dahlmann A et al (2013) Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 17:125–131

    Article  CAS  PubMed  Google Scholar 

  32. Dahlman A, Dörfelt K, Eicher F et al (2015) Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 87:434–441

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Jordan: Beratertätigkeit für Novartis, Boehringer, Riemser, Orexigen und Vivus. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jordan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, J. Pathophysiologie der Hypertonie. Internist 56, 219–223 (2015). https://doi.org/10.1007/s00108-014-3572-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3572-0

Schlüsselwörter

Keywords

Navigation