Skip to main content
Log in

Monogene und syndromale Krankheitsbilder bei morbider Adipositas

Selten aber wichtig

Monogenic and syndromic symptoms of morbid obesity

Rare but important

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Monogene und syndromale Adipositasformen sind selten und können klinisch variabel auftreten. Eine Differenzialdiagnose ist daher schwierig.

Fragestellung

Es sollten Kriterien für einen klinischen und molekularen Algorithmus zur Differenzialdiagnose von monogener und syndromaler Adipositas entwickelt werden.

Material und Methoden

Verfügbare Publikationen zum klinischen Erscheinungsbild und zu molekularen Defekten von monogenen und syndromalen Adipositasfällen wurden ausgewertet.

Ergebnisse

Eine monogene und syndromale Adipositas kann bei einer frühen Manifestation vor dem 5. Lebensjahr und Body-Mass-Index-Werten über 40 bzw über der 99. Perzentile vorliegen. Syndromale Fälle sind meist durch einen niedrigen IQ-Wert und einen Kleinwuchs charakterisiert. Monogene Störungen treten mit anderen endokrinen Störungen assoziiert auf. Die Bestimmung des Serumleptinwerts weist einen Leptinmangel nach. Für die Behandlung des Leptindefekts steht eine kausale Substitutionstherapie zur Verfügung. Die Sequenzierung des Melanocortin-4-Rezeptor(MC4R)-Gens weist die häufigste monogene Adipositasform nach. Eine Behandlung mit einem Analogon des melanozytenstimulierenden Hormons (MSH) ist für leptinresistente Fälle absehbar. Mit einer frühzeitigen Gabe von Wachstumshormon kann eine Adipositas bei Prader-Willi-Syndrom verhindert werden.

Schlussfolgerung

Aufgrund der teilweise verfügbaren kausalen Therapie sollte eine frühe Diagnose der monogenen und syndromalen Adipositas gestellt werden. Aus den jeweiligen Krankheitssymptomen, dem Serumleptinwert und der MC4R-Sequenzierung, lässt sich ein Diagnosealgorithmus ableiten, der eine Zuordnung der morbiden Adipositasfälle zu den einzelnen Diagnoseentitäten ermöglicht.

Abstract

Background

Monogenic and syndromic obesity are rare diseases with variable manifestation. Therefore diagnosis is difficult and often delayed.

Objectives

The purpose of this work was to develop a clinical diagnostic algorithm for earlier diagnosis.

Material and methods

Available publications for clinical symptoms and molecular defects of monogenic and syndromic obesity cases were evaluated.

Results

Monogenic and syndromic obesity can be expected in cases with early manifestation before the age of 5 years and a BMI above 40 or above the 99th percentile. Syndromic cases are mostly associated with a low IQ and dwarfism. Monogenic cases are associated with additional endocrine defects. Measurement of serum leptin proves the treatable leptin deficiency. Sequencing of the melanocortin-4 receptor gene (MC4R) allows diagnosis of the most frequent monogenic form of obesity. Treatment with a melanocyte-stimulating hormone (MSH) analog can be expected in the future. Early treatment of children with Prader–Willi syndrome can prevent severe obesity.

Conclusion

Because in some cases treatment is available, monogenic and syndromic obesity should be diagnosed early. Based on the disease symptoms, serum leptin, and MC4R sequencing, a diagnostic algorithm is proposed, which can be used to diagnose cases of morbid obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bonnefond A, Raimondo A, Stutzmann F et al (2013) Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest 123:3037–3041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bouchard C, Tremblay A, Després JP et al (1990) The response to long-term overfeeding in identical twins. N Engl J Med 322(21):1477–1482

    Article  CAS  PubMed  Google Scholar 

  3. Bouchard C (2008) Gene-environment interactions in the etiology of obesity: defining the fundamentals. Obesity (Silver Spring) 16(Suppl 3):S5–S10

  4. Butler MG (2011) Prader-Willi Syndrome: obesity due to genomic imprinting. Curr Genomics 12:204–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cai M, Nyberg J, Hruby VJ (2009) Melanotropins as drugs for the treatment of obesity and other feeding disorders: potential and problems. Curr Top Med Chem 9(6):554–563

    Article  CAS  PubMed  Google Scholar 

  6. Clément K, Vaisse C, Lahlou N et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 26:398–401

    Google Scholar 

  7. Coupaye M, Lorenzini F, Lloret-Linares C et al (2013) Growth hormone therapy for children and adolescents with Prader-Willi syndrome is associated with improved body composition and metabolic status in adulthood. J Clin Endocrinol Metab 98:328–335

    Article  Google Scholar 

  8. Farooqi IS, Jebb SA, Langmack G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341(12):879–884

    Article  CAS  PubMed  Google Scholar 

  9. Farooqi IS, O’Rahilly S (2014) 20 years of leptin: human disorders of leptin action. J Endocrinol 223(1):T63–T70

    Article  CAS  PubMed  Google Scholar 

  10. Farooqi IS, Keogh JM, Yeo GS et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095

    Article  CAS  PubMed  Google Scholar 

  11. Girard D, Petrovsky N (2012) Alström syndrome: insights into the pathogenesis of metabolic disorders. Nat Rev Endocrinol 7(2):77–88

    Article  Google Scholar 

  12. Hatoum IJ, Stylopoulos N, Vanhoose AM et al (2012) Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab 97:1023–1031

    Article  Google Scholar 

  13. Hawkey CJ, Smithies A (1976) The Prader-Willi syndrome with a 15/15 translocation. Case report and review of the literature. J Med Genet 13(2):152–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jackson RS, Creemers JW, Ohagi S et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16(3):303–306

    Article  CAS  PubMed  Google Scholar 

  15. Krude H, Biebermann H, Luck W et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    Article  CAS  PubMed  Google Scholar 

  16. Krude H, Biebermann H, Schnabel D et al (2003) Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 88(10):4633–4640

    Article  CAS  PubMed  Google Scholar 

  17. Laurence JZ, Moon RC (1995) Four cases of „retinitis pigmentosa“ occurring in the same family, and accompanied by general imperfections of development. 1866. Obes Res 3(4):400–403

    Article  CAS  PubMed  Google Scholar 

  18. Levine MA (2012) An update on the clinical and molecular characteristics of pseudohypoparathyroidism. Curr Opin Endocrinol Diabetes Obes 19(6):443–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Martín MG, Lindberg I, Solorzano-Vargas RS et al (2013) Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 145(1):138–148

    Article  PubMed Central  PubMed  Google Scholar 

  20. M’hamdi O, Ouertani I, Chaabouni-Bouhamed H (2014) Update on the genetics of bardet-biedl syndrome. Mol Syndromol 5:51–56

    Article  Google Scholar 

  21. Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  CAS  PubMed  Google Scholar 

  22. Prader A, Labhart A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonicartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261

    Google Scholar 

  23. Weigle DS (1994) Appetite and the regulation of body composition. FASEB J 8(3):302–310

    CAS  PubMed  Google Scholar 

  24. Wheeler E, Huang N, Bochukova EG et al (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45:513–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yeo GS, Heisler LK (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15(10):1343–1349

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Wiegand und H. Krude geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Krude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegand, S., Krude, H. Monogene und syndromale Krankheitsbilder bei morbider Adipositas. Internist 56, 111–120 (2015). https://doi.org/10.1007/s00108-014-3532-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3532-8

Schlüsselwörter

Keywords

Navigation