Skip to main content
Log in

Diagnostik und Behandlung des akuten Leberversagens

Wissenschaftliche Entwicklungen

Diagnosis and therapies for acute liver failure

Scientific developments

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Etwa 200 Patienten erkranken jedes Jahr in Deutschland an einem akuten Leberversagen (ALV). Aufgrund des seltenen Auftretens und der Schwere des Erkrankungsverlaufs stehen allerdings nur wenige evidenzbasierte Therapien zur Verfügung.

Fragestellung

Diese Übersichtsarbeit diskutiert die wichtigsten Entwicklungen in der Diagnostik und Therapie des ALV und gibt einen Ausblick auf ihre zukünftige klinische Relevanz.

Ergebnisse

Die etablierten Enzymparameter reflektieren in Kombination mit den die Synthese- bzw. Entgiftungsfunktion beschreibenden Markern nur unzureichend die Schwere und den Verlauf des ALV. Zukünftig könnte die Messung von ins Blut freigesetzten microRNAs und von Zytokeratin-18-Spaltprodukten das Repertoire der Diagnostik und Verlaufskontrolle verbessern. Zuletzt haben sich nur wenige neue medikamentöse Behandlungsansätze abgezeichnet, doch es wurde viel in die Evaluation artifizieller Leberunterstützungssysteme investiert. Aufgrund des günstigen Sicherheitsprofils werden die zellfreien Detoxifizierungssysteme heute punktuell in der Behandlung von Patienten mit fortgeschrittenen Lebererkrankungen eingesetzt, auch wenn größere Studien bisher keinen Überlebensvorteil nachweisen konnten. Extrakorporale Unterstützungssysteme sowie Zelltransplantationsverfahren sind durch die Verfügbarkeit metabolisch aktiver Spenderhepatozyten limitiert, weshalb der Differenzierung von Leberzellen aus geeigneten Stammzellen eine hohe Bedeutung beigemessen wird.

Schlussfolgerung

Die stammzellbiologische Forschung und das Tissue Engineering zeigen aktuell in ersten tierexperimentellen Studien Möglichkeiten auf, wie stammzellbasierte artifizielle Leberzellsysteme zur Behandlung des ALV eingesetzt werden können.

Abstract

Background

In Germany about 200 patients suffer from acute liver failure each year. Due to its rare occurrence and the severity of the disease course only few evidence-based therapeutic strategies are available.

Objectives

This review aims to discuss the most important developments for the diagnosis and therapy of acute liver failure and provides an outlook of their future clinical relevance.

Results

The established enzyme parameters combined with synthesis- and detoxification-related markers insufficiently predict the severity and disease course of acute liver failure. In future, levels of released microRNAs or cleaved cytokeratin 18 fragments may improve the diagnostic repertoire. Currently, only few drug-based therapeutic approaches are available, but much effort has been invested in artificial liver support devices. Based on their favorable risk assessment cell-free detoxification systems are applied sporadically during the treatment of patients with advanced liver diseases, even if to date larger studies have failed to prove a significant survival benefit. Extracorporeal liver assist devices and cell transplantation approaches rely on the availability of metabolically active donor hepatocytes and, thus, the generation of liver cells from appropriate stem cells is gaining interest.

Conclusion

Current research in stem cell biology and tissue engineering suggest in initial animal studies the feasibility of stem cell-based artificial liver support systems for future treatment of acute liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Antoine DJ, Dear JW, Lewis PS et al (2013) Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology 58:777–787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Ben-Ari Z, Zilbermints V, Pappo O et al (2011) Erythropoietin increases survival and attenuates fulminant hepatic failure injury induced by D-galactosamine/lipopolysaccharide in mice. Transplantation 92:18–24

    Article  PubMed  CAS  Google Scholar 

  3. Canbay A, Feldstein A, Kronenberger B et al (2014) Cytokeratin 18 as marker for non-invasive diagnosis and prognosis of acute and chronic liver diseases. Z Gastroenterol 52:290–295

  4. Cui YL, Meng MB, Tang H et al (2008) Recombinant human hepatocyte growth factor for liver failure. Contemp Clin Trials 29:696–704

    Article  PubMed  CAS  Google Scholar 

  5. Dao DY, Seremba E, Ajmera V et al (2012) Use of nucleoside (tide) analogues in patients with hepatitis B-related acute liver failure. Dig Dis Sci 57:1349–1357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Demetriou AA, Brown RS Jr, Busuttil RW et al (2004) Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 239:660–670

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fusaki N, Ban H, Nishiyama A et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Garg H, Sarin SK, Kumar M et al (2011) Tenofovir improves the outcome in patients with spontaneous reactivation of hepatitis B presenting as acute-on-chronic liver failure. Hepatology 53:774–780

    Article  PubMed  CAS  Google Scholar 

  9. Haridass D, Yuan Q, Becker PD et al (2009) Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 175:1483–1492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hoppo T, Komori J, Manohar R et al (2011) Rescue of lethal hepatic failure by hepatized lymph nodes in mice. Gastroenterology 140:656–666.e2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Jedicke N, Struever N, Aggrawal N et al (2014) alpha-1-antitrypsin inhibits acute liver failure in mice. Hepatology 59:2299–2308

    Article  PubMed  CAS  Google Scholar 

  12. John K, Hadem J, Krech T et al (2014) MicroRNAs play a role for spontaneous recovery from acute liver failure. Hepatology 60:1346–1355

    Article  PubMed  CAS  Google Scholar 

  13. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kribben A, Gerken G, Haag S et al (2012) Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology 142:782–789.e3

    Article  PubMed  CAS  Google Scholar 

  15. Kumar M, Satapathy S, Monga R et al (2007) A randomized controlled trial of lamivudine to treat acute hepatitis B. Hepatology 45:97–101

    Article  PubMed  CAS  Google Scholar 

  16. Lee WM, Hynan LS, Rossaro L et al (2009) Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 137:856–864, 864.e1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lee WM, Stravitz RT, Larson AM (2012) Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology 55:965–967

    Article  PubMed  PubMed Central  Google Scholar 

  18. Möbus S, Yang D, Yuan Q et al (2014) MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. J Hepatol, E-Pub: 15. August 2014

  19. Moniaux N, Song H, Darnaud M et al (2011) Human hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein cures fas-induced acute liver failure in mice by attenuating free-radical damage in injured livers. Hepatology 53:618–627

    Article  PubMed  CAS  Google Scholar 

  20. Ott M, Schneider A, Attaran M et al (2006) Transplantation of hepatocytes in liver failure. Dtsch Med Wochenschr 131:888–891

    Article  PubMed  CAS  Google Scholar 

  21. Palmes D, Skawran S, Stratmann U et al (2005) Amelioration of microcirculatory damage by an endothelin A receptor antagonist in a rat model of reversible acute liver failure. J Hepatol 42:350–357

  22. Puppi J, Strom SC, Hughes RD et al (2012) Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant 21:1–10

    Article  PubMed  Google Scholar 

  23. Saliba F, Camus C, Durand F et al (2013) Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: a randomized, controlled trial. Ann Intern Med 159:522–531

    Article  PubMed  Google Scholar 

  24. Sauer IM, Zeilinger K, Obermayer N et al (2002) Primary human liver cells as source for modular extracorporeal liver support – a preliminary report. Int J Artif Organs 25:1001–1005

    PubMed  CAS  Google Scholar 

  25. Schneider A, Attaran M, Meier PN et al (2006) Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation 82:1115–1116

    Article  PubMed  Google Scholar 

  26. Sgodda M, Mobus S, Hoepfner J et al (2013) Improved hepatic differentiation strategies for human induced pluripotent stem cells. Curr Mol Med 13:842–855

    Article  PubMed  CAS  Google Scholar 

  27. Sharma AD, Narain N, Händel EM et al (2011) MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 53:1651–1661

    Article  PubMed  CAS  Google Scholar 

  28. Stadlbauer V, Krisper P, Beuers U et al (2007) Removal of bile acids by two different extracorporeal liver support systems in acute-on-chronic liver failure. ASAIO J 53:187–193

    Article  Google Scholar 

  29. Starkey Lewis PJ, Dear J, Platt V et al (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54:1767–1776

    Article  Google Scholar 

  30. Starkey Lewis PJ, Merz M, Couttet P et al (2012) Serum microRNA biomarkers for drug-induced liver injury. Clin Pharmacol Ther 92:291–293

    Article  Google Scholar 

  31. Szkolnicka D, Farnworth SL, Lucendo-Villarin B et al (2014) Deriving functional hepatocytes from pluripotent stem cells. Curr Protoc Stem Cell Biol 30:1G.5.1–1G.5.12

    PubMed  Google Scholar 

  32. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  34. Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  PubMed  CAS  Google Scholar 

  35. Trey C, Davidson CS (1970) The management of fulminant hepatic failure. Prog Liver Dis3:282–298

    Google Scholar 

  36. Voelkel C, Galla M, Maetzig T et al (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci U S A 107:7805–7810

    Article  Google Scholar 

  37. Volkmann X, Anstaett M, Hadem J et al (2008) Caspase activation is associated with spontaneous recovery from acute liver failure. Hepatology 47:1624–1633

    Article  PubMed  CAS  Google Scholar 

  38. Warlich E, Kühle J, Cantz T et al (2011) Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 19:782–789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Ott, T. Cantz, A. Schneider und M.P. Manns geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren. Unser Beitrag ist ein Übersichtsartikel und beschreibt keine eigenen Originaldaten, denen Studien zugrunde liegen würden. Allerdings werden publizierte klinische Studien benannt und diskutiert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Manns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ott, M., Cantz, T., Schneider, A. et al. Diagnostik und Behandlung des akuten Leberversagens. Internist 55, 1288–1295 (2014). https://doi.org/10.1007/s00108-014-3507-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3507-9

Schlüsselwörter

Keywords

Navigation