Skip to main content
Log in

Das Fettgewebe – ein endokrines Organ

Adipose tissue—an endocrine organ

  • CME Zertifizierte Fortbildung
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Adipositas gehört zu den wichtigsten Gesundheitsproblemen. Ihre Inzidenz ist in den vergangenen Jahrzehnten dramatisch gestiegen. Kennzeichnend ist eine Zunahme an Fettgewebe. Neben den wichtigen Funktionen als Energiespeicher, mechanischer Schutz und Wärmeisolator ist das Fettgewebe ein aktives endokrines Organ, das Hunderte von Peptidhormonen produziert, sog. Adipokine. Über Adipokine signalisiert das Fettgewebe anderen Geweben und Organsystemen seinen Funktionszustand. Bei Adipositas ist die Funktion des Fettgewebes häufig gestört. Die resultierenden Veränderungen zirkulierender Adipokinspiegel können das Risiko für die Entstehung von Insulinresistenz, Typ-2-Diabetes, Fettlebererkrankung, Bluthochdruck, Fettstoffwechselstörungen, endothelialer Dysfunktion u. a. erhöhen. Deshalb ist denkbar, dass Adipokine in der Zukunft als diagnostische Marker, als Substrat oder Therapeutikum für pharmakologische Therapiestrategien metabolischer Erkrankungen klinisch relevant werden.

Abstract

The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines) changes towards a proinflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity and chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity-related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Mensink GB, Lampert T, Bergmann E (2005) Übergewicht und Adipositas in Deutschland 1984–2003. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 48:1348–1356

    Article  CAS  PubMed  Google Scholar 

  2. Blüher M (2010) Do adipokines link obesity to its related metabolic and cardiovascular diseases? Clin Lipidol 5:95–107

    Article  Google Scholar 

  3. Farooqi IS, O’Rahilly S (2007) Genetic factors in human obesity. Obes Rev 8:37–40

    Article  PubMed  Google Scholar 

  4. Hebebrand J, Friedel S, Schäuble N et al (2003) Perspectives: molecular genetic research in human obesity. Obes Rev 4:139–146

    Article  CAS  PubMed  Google Scholar 

  5. Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Blüher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250

    Article  PubMed  Google Scholar 

  7. Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 1–2:91–101

  8. Blüher M (2012) Clinical relevance of adipokines. Diabetes Metab J 36:317–327

    Article  Google Scholar 

  9. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  10. Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–938

    Article  CAS  PubMed  Google Scholar 

  11. Spranger J, Kroke A, Möhlig M et al (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228

    Article  CAS  PubMed  Google Scholar 

  12. Blüher M, Rudich A, Klöting N et al (2012) Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35:342–349

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wei Z, Peterson JM, Lei X et al (2012) C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. J Biol Chem 287:10301–10315

  14. Lee YH, Magkos F, Mantzoros CS et al (2011) Effects of leptin and adiponektin on pancreatic β-cell function. Metabolism 60:1664–1672

    Article  CAS  PubMed  Google Scholar 

  15. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  CAS  PubMed  Google Scholar 

  17. Savage DB, O’Rahilly S (2002) Leptin: a novel therapeutic role in lipodystrophy. J Clin Invest 109:1285–1286

  18. Chou K, Perry CM (2013) Metreleptin: first global approval. Drugs 73:989–997

    Article  CAS  PubMed  Google Scholar 

  19. Moon HS, Dalamaga M, Kim SY (2013) Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 34:377–412

    Article  CAS  PubMed  Google Scholar 

  20. Perrier S, Jardé T (2012) Adiponectin, an anti-carcinogenic hormone? A systematic review on breast, colorectal, liver and prostate cancer. Curr Med Chem 19:5501–5512

    Article  CAS  PubMed  Google Scholar 

  21. Aleksandrova K, Drogan D, Boeing H (2014) Adiposity, mediating biomarkers and risk of colon cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer 134:612–621

    Article  CAS  PubMed  Google Scholar 

  22. Dietze-Schroeder D, Sell H, Uhlig M et al (2005) Autocrine action of Adiponektin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes 54:2003–2011

    Article  CAS  PubMed  Google Scholar 

  23. Maeda N, Shimomura I, Kishida K et al (2002) Diet-induced insulin resistance in mice lacking Adiponektin/ACRP30. Nat Med 8:731–737

    Article  CAS  PubMed  Google Scholar 

  24. Okamoto M, Ohara-Imaizumi M, Kubota N et al (2008) Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51:827–835

    Article  CAS  PubMed  Google Scholar 

  25. Okada-Iwabu M, Yamauchi T, Iwabu M et al (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503:493–499

    Article  CAS  PubMed  Google Scholar 

  26. Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    Article  CAS  PubMed  Google Scholar 

  27. Townsend KL, Suzuki R, Huang T et al (2012) Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J 26:2187–2196

    Article  Google Scholar 

  28. Vaccaro AR, Whang PG, Patel T et al (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8:457–465

    Article  Google Scholar 

  29. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  30. Wascher TC, Lindeman JH, Sourij H et al (2011) Chronic TNF-α neutralization does not improve insulin resistance or endothelial function in „healthy“ men with metabolic syndrome. Mol Med 17:189–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

  32. Nauck MA (2011) Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 124:S3–S18

    Article  CAS  PubMed  Google Scholar 

  33. Lamers D, Famulla S, Wronkowitz N et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sell H, Blüher M, Klöting N et al (2013) Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 36:4083–4090

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Blüher gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Blüher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blüher, M. Das Fettgewebe – ein endokrines Organ. Internist 55, 687–698 (2014). https://doi.org/10.1007/s00108-014-3456-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3456-3

Schlüsselwörter

Keywords

Navigation