Skip to main content
Log in

Neue Medikamente in der Kardiologie

Herzinsuffizienz, Antikoagulation, Dyslipidämien

New pharmaceuticals in cardiology

Heart failure, anticoagulation, dyslipidemia

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

In großen klinischen Studien wurden kürzlich drei innovative pharmakologische Therapieansätze untersucht, die für die Kardiologie in Zukunft vermutlich eine große Rolle spielen werden. Serelaxin ist ein vasoaktives Peptidhormon, das während der Schwangerschaft gebildet wird und dabei den Gefäßwiderstand senkt, das Herzzeitvolumen steigert und die Nierenfunktion verbessert. Kürzlich konnte gezeigt werden, dass die Gabe von Serelaxin bei Patienten mit akuter Herzinsuffizienz die klinische Stauungssymptomatik verbessert. Als sekundärer Endpunkt war sogar die 180-Tage-Mortalität reduziert. Mit Serelaxin könnte somit eine neue Therapie mit prognostischer Bedeutung für die akute Herzinsuffizienz zur Verfügung stehen. Edoxaban ist ein selektiver Faktor-Xa-Inhibitor, der die Thrombinproduktion und Thrombusbildung hemmt. Zwei kürzlich publizierte Studien fanden, dass Edoxaban in der Prävention und Behandlung venöser Thromboembolien sowie in der Vorbeugung von Schlaganfällen und systemischen Embolien bei Vorhofflimmern mindestens genauso effektiv wie der Vitamin-K-Antagonist Warfarin ist. Im Vergleich zu Warfarin reduziert Edoxaban signifikant schwere Blutungskomplikationen. Mit Edoxaban wird vermutlich zeitnah das vierte vielversprechende neue orale Antikoagulans Marktreife erreichen. Die Serinprotease „proprotein convertase subtilisin/kexin 9“ (PCSK9) reduziert die Fähigkeit der Leber, Low-density-lipoprotein-Cholesterin (LDL-C) zu binden und so aus dem Blut zu entfernen. Kürzlich wurde ein monoklonaler Antikörper für PCSK9 entwickelt, der in klinischen Studien eine bis zu 73 %ige LDL-C-Senkung bewirkte sowie die Lipoprotein(a)- und Apolipoprotein-B-Werte reduzierte. Mit den PCSK9-Inhibitoren ist wahrscheinlich bald eine aussichtsreiche Medikation mit einem neuartigen Wirkmechanismus zur LDL-C-Reduktion verfügbar.

Abstract

Three innovative pharmaceuticals which might play an important role in the field of cardiology in the near future were recently tested in large clinical studies. Serelaxin, a vasoactive hormone peptide that is produced during pregnancy, reduces vessel resistance, increases cardiac output, and improves renal function. Lately, it was demonstrated that serelaxin significantly reduces congestion symptoms in patients with acute heart failure. As a secondary endpoint the mortality at day 180 was reduced. Therefore, serelaxin seems to be a promising new drug for the treatment of acute heart failure which might have a prognostic impact. Edoxaban is a selective factor Xa inhibitor, which inhibits thrombin production and thrombus formation. Two recently published studies reported that edoxaban is at least as effective as the vitamin K antagonist warfarin in prevention and treatment of venous thromboembolism and in the prevention of stroke and systemic embolism due to nonvalvular atrial fibrillation. Compared to warfarin, edoxaban significantly exhibited less frequent severe bleeding complications. Edoxaban will probably soon be the fourth new oral anticoagulant available for patients. The serine protease proprotein convertase subtilisin/kexin 9 (PCSK9) reduces the ability of the liver to bind low-density lipoprotein cholesterol (LDL-C) and to remove it from the circulation. Recently, a monoclonal antibody for PCSK9 was developed which induces a LDL-C plasma level reduction up to 73 % and also decreases lipoprotein(a) and apolipoprotein B. PCSK9 inhibition is a promising new mechanism for LDL-C reduction and the corresponding drug will be presumably approved soon by the regulatory authorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abifadel M, Varret M, Rabes JP et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  PubMed  CAS  Google Scholar 

  2. Baigent C, Blackwell L, Emberson J et al (2011) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681

    Google Scholar 

  3. Bauer KA (2013) Pros and cons of new oral anticoagulants. Hematology Am Soc Hematol Educ Program 2013:464–470

    Article  PubMed  Google Scholar 

  4. Buller HR, Decousus H, Grosso MA et al (2013) Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med 369:1406–1415

    Google Scholar 

  5. Camm AJ, Bounameaux H (2011) Edoxaban: a new oral direct factor Xa inhibitor. Drugs 71:1503–1526

    Article  PubMed  CAS  Google Scholar 

  6. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Google Scholar 

  7. Dschietzig T, Teichman S, Unemori E et al (2009) Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail 15:182–190

    Google Scholar 

  8. Filippatos G, Teerlink JR, Farmakis D et al (2013) Serelaxin in acute heart failure patients with preserved left ventricular ejection fraction: results from the RELAX-AHF trial. Eur Heart J (im Druck). DOI: 10.1093/eurheartj/eht497

  9. Giugliano RP, Desai NR, Kohli P et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017

    Article  PubMed  CAS  Google Scholar 

  10. Giugliano RP, Ruff CT, Braunwald E et al (2013) Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 369:2093–2104

    Google Scholar 

  11. Hernandez-Montfort JA, Arora S, Slawsky MT (2013) Relaxin for treatment of acute heart failure: making the case for treating targeted patient profiles. Curr Heart Fail Rep 10:198–203

    Article  PubMed  CAS  Google Scholar 

  12. Kuroda Y, Hirayama C, Hotoda H et al (2013) Postmarketing safety experience with edoxaban in Japan for thromboprophylaxis following major orthopedic surgery. Vasc Health Risk Manag 9:593–598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Google Scholar 

  14. Mendell J, Zahir H, Matsushima N et al (2013) Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs 13:331–342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Metra M, Cotter G, Davison BA et al (2013) Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol 61:196–206

    Google Scholar 

  16. Ponikowski P, Mitrovic V, Ruda M et al (2014) A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J 35:431–441

    Article  CAS  Google Scholar 

  17. Poss J, Link A, Bohm M (2013) Acute and chronic heart failure in light of the new ESC guidelines. Herz 38:812–820

    Article  PubMed  CAS  Google Scholar 

  18. Rashid S, Curtis DE, Garuti R et al (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A 102:5374–5379

    Article  CAS  Google Scholar 

  19. Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818

    Google Scholar 

  20. Roth EM, McKenney JM, Hanotin C et al (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367:1891–1900

    Google Scholar 

  21. Salazar DE, Mendell J, Kastrissios H et al (2012) Modelling and simulation of edoxaban exposure and response relationships in patients with atrial fibrillation. Thromb Haemost 107:925–936

    Article  PubMed  CAS  Google Scholar 

  22. Stein EA (2013) Low-density lipoprotein cholesterol reduction by inhibition of PCSK9. Curr Opin Lipidol 24:510–517

    Article  PubMed  CAS  Google Scholar 

  23. Stein EA, Mellis S, Yancopoulos GD et al (2012) Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 366:1108–1118

    Google Scholar 

  24. Teerlink JR, Cotter G, Davison BA et al (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381:29–39

    Article  PubMed  CAS  Google Scholar 

  25. Teerlink JR, Metra M, Felker GM et al (2009) Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373:1429–1439

    Article  PubMed  CAS  Google Scholar 

  26. Teichman SL, Unemori E, Dschietzig T et al (2009) Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail Rev 14:321–329

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Teichman SL, Unemori E, Teerlink JR et al (2010) Relaxin: review of biology and potential role in treating heart failure. Curr Heart Fail Rep 7:75–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Urban D, Poss J, Bohm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408

    Google Scholar 

  29. Zhang DW, Lagace TA, Garuti R et al (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. F.S. Czepluch gibt an, dass kein Interessenkonflikt besteht. G. Hasenfuß hat Vortrags- und/oder Beraterhonorare der Firmen Novartis, Servier, Impulse Dynamics, CircuLite, AstraZeneca, Bayer und DC Devices erhalten. C. Jacobshagen hat Vortrags- und/oder Beraterhonorare der Firmen Novartis, Daichii Sankyo, Pfizer, Bristol-Myers Squibb, Boehringer Ingelheim, AstraZeneca, Berlin-Chemie und Servier erhalten. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jacobshagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czepluch, F., Hasenfuß, G. & Jacobshagen, C. Neue Medikamente in der Kardiologie. Internist 55, 382–389 (2014). https://doi.org/10.1007/s00108-013-3418-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-013-3418-1

Schlüsselwörter

Keywords

Navigation