Skip to main content
Log in

Therapierefraktäre Hypertonie

Stellenwert neuer Therapiekonzepte

Treatment resistant hypertension

Value of a new treatment concept

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Bei einem Großteil der Patienten mit arterieller Hypertonie kann eine Überaktivität des sympathischen Nervensystems nachgewiesen werden. Die therapieresistente Hypertonie erfordert ein gezieltes diagnostisches Vorgehen zum Ausschluss und ggf. zur kausalen Therapie sekundärer Hypertonieformen. Können sekundäre Ursachen ausgeschlossen werden und erreicht man trotz Optimierung der antihypertensiven Medikation und Ausschöpfung konservativer Maßnahmen nicht das Blutdruckziel, stehen neue invasive Therapiestrategien wie die renale sympathische Denervation oder die Barorezeptorstimulation zur Verfügung. Diese sollten bei ausgewählten Patienten mit therapierefraktärer Hypertonie in spezialisierten Zentren zur Anwendung kommen. Für beide Verfahren gibt es noch wenige Daten zur langfristigen Sicherheit und Effektivität. Ihre Anwendung ist derzeit nicht als Alternative zur medikamentösen Therapie zu sehen, sondern als Ultima Ratio bei Versagen der etablierten konservativen Therapieformen. Bislang ist die gute Wirksamkeit der interventionellen Verfahren nur für Patienten belegt, die trotz einer durchschnittlich über 5-fachen antihypertensiven Medikation systolische Blutdruckwerte deutlich über 160 mmHg aufwiesen.

Abstract

Sympathetic overexpression can be found in a majority of hypertensive patients. Resistant arterial hypertension requires a targeted diagnostic procedure in order to exclude secondary causes of hypertension which can be treated specifically with established therapies. If secondary reasons are not identified, the antihypertensive medication is already optimal and lifestyle changes have been realized, but still the goal of antihypertensive therapy cannot be achieved, alternative invasive therapy strategies such as renal sympathetic denervation and baroreflex activation have been developed to achieve blood pressure control. These therapies are restricted to specialized centers which treat well-defined patients with therapy-resistant hypertension. Little long-term data concerning safety and efficacy are available for the two strategies. However, they should preferably be used as an ultima-ratio and add-on pathway to conservative procedures when established medication fails to achieve blood pressure control. To date, the effectiveness of the interventional antihypertensive therapies has only been shown on patients with systolic blood pressure over 160 mmHg and a mean oral medication of five drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Calhoun DA, Jones D, Textor S et al (2008) Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51:1403–1419

    Article  PubMed  CAS  Google Scholar 

  2. Cuspidi C, Macca G, Sampieri L et al (2001) High prevalence of cardiac and extracardiac target organ damage in refractory hypertension. J Hypertens 19:2063–2070

    Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360:1903–1913

    Article  PubMed  Google Scholar 

  4. Law MR, Morris JK, Wald NJ (2009) Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 338:b1665

    Article  PubMed  CAS  Google Scholar 

  5. Ouzan J, Perault C, Lincoff AM et al (2002) The role of spironolactone in the treatment of patients with refractory hypertension. Am J Hypertens 15(4 Pt 1):333–339

    Article  PubMed  CAS  Google Scholar 

  6. Nishizaka MK, Zaman MA, Calhoun DA (2003) Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 16(11 Pt 1):925–930

    Article  PubMed  CAS  Google Scholar 

  7. Lazich I, Bakris GL (2011) Endothelin antagonism in patients with resistant hypertension and hypertension nephropathy. Contrib Nephrol 172:223–234

    Article  PubMed  CAS  Google Scholar 

  8. Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  9. Schlaich MP, Sobotka PA, Krum H et al (2009) Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54:1195–1201

    Article  PubMed  CAS  Google Scholar 

  10. Symplicity HTN-1 Investigators (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57:911–917

    Article  Google Scholar 

  11. Esler MD, Krum H, Sobotka PA et al (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  PubMed  Google Scholar 

  12. Schlaich MP, Sobotka PA, Krum H et al (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934

    Google Scholar 

  13. Vonend O, Antoch G, Rump LC, Blondin D (2012) Secondary rise in blood pressure after renal denervation. Lancet 380:778

    Article  PubMed  Google Scholar 

  14. Vonend O, Quack I, Rump LC (2012) Differentialdiagnostik der schwer einstellbaren Hypertonie. Nephrologe 7:374–384

    Article  Google Scholar 

  15. Mahfoud F, Vonend O, Bruck H et al (2011) Expert consensus statement on interventional renal sympathetic denervation for hypertension treatment. Dtsch Med Wochenschr 136:2418

    Article  PubMed  CAS  Google Scholar 

  16. Hering D, Mahfoud F, Walton AS et al (2012) Renal denervation in moderate to severe CKD. J Am Soc Nephrol 23:1250–1257

    Google Scholar 

  17. Mahfoud F, Cremers B, Janker J et al (2012) Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60:419–424

    Article  PubMed  CAS  Google Scholar 

  18. Witkowski A, Prejbisz A, Florczak E et al (2011) Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58:559–565

    Article  PubMed  CAS  Google Scholar 

  19. Brandt MC, Mahfoud F, Reda S et al (2012) Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59:901–909

    Google Scholar 

  20. Ukena C, Mahfoud F, Kindermann I et al (2011) Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 58:1176–1182

    Google Scholar 

  21. Kandzari DE, Bhatt DL, Sobotka PA et al (2012) Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol 35:528–535

    Article  PubMed  Google Scholar 

  22. Kaltenbach B, Franke J, Bertog SC et al (2012) Renal sympathetic denervation as second-line therapy in mild resistant hypertension: a pilot study. Catheter Cardiovasc Interv (im Druck)

  23. Heusser K, Tank J, Engeli S, Diedrich A et al (2010) Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55:619–626

    Article  PubMed  CAS  Google Scholar 

  24. Scheffers IJ, Kroon AA, Schmidli J et al (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56:1254–1258

    Google Scholar 

  25. Scheffers IJ, Kroon AA, Leeuw PW de (2010) Carotid baroreflex activation: past, present, and future. Curr Hypertens Rep 12:61–66

    Article  PubMed  Google Scholar 

  26. Bisognano JD, Bakris G, Nadim MK et al (2011) Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol 58:765–773

    Google Scholar 

  27. Hoppe UC, Brandt MC, Wachter R et al (2012) Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens 6:270–276

    Google Scholar 

  28. Deutsche Hochdruckliga (2008) Leitlinien zur Behandlung der arteriellen Hypertonie

  29. Moser M, Setaro JF (2006) Clinical practice. Resistant or difficult-to-control hypertension. N Engl J Med 355:385–392

    Google Scholar 

  30. Buchner N, Vonend O, Rump LC (2006) Pathophysiology of hypertension: what’s new? Herz 31:294–302

    Article  PubMed  Google Scholar 

  31. Pedrosa RP, Drager LF, Gonzaga CC et al (2011) Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 58:811–817

    Article  PubMed  CAS  Google Scholar 

  32. Buchner NJ, Quack I, Woznowski M et al (2011) Microvascular endothelial dysfunction in obstructive sleep apnea is caused by oxidative stress and improved by continuous positive airway pressure therapy. Respiration 82:409–417

    Article  PubMed  Google Scholar 

  33. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053

    PubMed  Google Scholar 

  34. Kuhlmann U, Becker HF, Birkhahn M et al (2000) Sleep-apnea in patients with end-stage renal disease and objective results. Clin Nephrol 53:460–466

    PubMed  CAS  Google Scholar 

  35. Quack I, Fritz A, Rump LC (2010) Sleep apnea syndrome in chronic renal failure. Nephrologe 1:43–48

    Article  Google Scholar 

  36. Vonend O, Rump LC (2006) Normokalemic primary hyperaldosteronism. Dtsch Med Wochenschr 131:H24–27

    Article  PubMed  CAS  Google Scholar 

  37. Conn J (1955) Primary hyperaldosteronism. J Lab Clin Med 45:661–664

    Google Scholar 

  38. Douma S, Petidis K, Doumas M et al (2008) Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet 371:1921–1926

    Article  PubMed  CAS  Google Scholar 

  39. Funder JW, Carey RM, Fardella C et al (2008) Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 93:3266–3281

    Google Scholar 

  40. Vonend O, Stegbauer J, Kokulinsky P et al (2007) Comparison of adrenal imaging and selective adrenal vein sampling in primary hyperaldosteronism. Dtsch Med Wochenschr 132:2436–2441

    Article  PubMed  CAS  Google Scholar 

  41. Vonend O, Ockenfels N, Gao X et al (2011) Adrenal venous sampling: evaluation of the German Conn’s registry. Hypertension 57:990–995

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Vonend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siekierka-Harreis, M., Rump, L. & Vonend, O. Therapierefraktäre Hypertonie. Internist 53, 1411–1419 (2012). https://doi.org/10.1007/s00108-012-3134-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-012-3134-2

Schlüsselwörter

Keywords

Navigation