Skip to main content
Log in

Klinische Probleme der Urämie

Clinical issues with uremia

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Unter Urämie versteht man die Gesamtheit aller Effekte der chronischen Niereninsuffizienz infolge einer verminderten Ausscheidung von Stoffen, die beim Gesunden renal eliminiert werden. Akut äußert sich die Urämie in einer Symptomatik mit Übelkeit, Perikarditis, Pleuritis und zentralnervösen Störungen bis zum Koma. Die akute Urämie ist durch Nierenersatzverfahren behandelbar. Daneben gibt es chronische Störungen vieler Organsysteme, die auch unter der Dialysetherapie weiter voranschreiten. Diese sind durch eine in zeitlicher Hinsicht oder im Hinblick auf das Molekulargewichtsspektrum unzureichende Clearance des Nierenersatzverfahrens bedingt. Urämische Toxine können Metabolite aus dem Intermediär- und Nukleinsäurestoffwechsel oder Proteine sein, es kann sich aber auch um Stoffe handeln, die unter den Bedingungen des urämischen Milieus chemisch modifiziert werden. Sie spielen für alle Langzeitkomplikationen der Niereninsuffizienz eine Rolle: chronische Entzündung, Herz-Kreislauf-Veränderungen, Immundefekt, Malnutrition, Anämie, Knochenstoffwechselstörung sowie Polyneuropathie. Die therapeutischen Möglichkeiten sind begrenzt, in der Regel sind die Komplikationen jedoch durch eine erfolgreiche Nierentransplantation reversibel.

Abstract

Uremia describes the consequences of intoxication in chronic renal failure with substances that are renally cleared in healthy individuals. Acute uremia is a syndrome of gastrointestinal symptoms, pericarditis, pleuritis, and central nervous system alterations ending with coma. These symptoms can be resolved by renal replacement therapy. In addition, chronic uremia can result in damage of multiple organ systems, which continues to advance despite dialysis therapy. This is caused by retention of toxins that cannot be adequately removed due to insufficient treatment time or a molecular weight range hampering elimination. Uremic toxins can be generated by the energy or nucleic acid metabolism, they can be proteins or large molecules that are altered chemically by the uremic milieu. Chronic uremia can influence the majority of long-term complications of chronic renal failure: systemic microinflammation, cardiovascular disease, immunodeficiency, malnutrition, anemia, bone metabolism, and polyneuropathy. There are few therapeutic options other than kidney transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aguilera A et al (2004) Eating behavior disorders in uremia: a question of balance in appetite regulation. Semin Dial 17:44–52

    Article  PubMed  Google Scholar 

  2. Auffray C et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  PubMed  CAS  Google Scholar 

  3. Chiang CK, Tanaka T, Inagi R et al (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest 91:1564–1571

    Article  PubMed  CAS  Google Scholar 

  4. Del Vecchio L, Locatelli F, Carini M (2011) What we know about oxidative stress in patients with chronic kidney disease on dialysis – clinical effects, potential treatment, and prevention. Semin Dial 24:56–64

    Article  Google Scholar 

  5. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:112–119

    Article  Google Scholar 

  6. Girndt M et al (2002) Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events. Kidney Int 62:949–955

    Article  PubMed  CAS  Google Scholar 

  7. Girndt M, Sester M, Sester U et al (2001) Defective expression of B7-2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect. Kidney Int 59:1382–1389

    Article  PubMed  CAS  Google Scholar 

  8. Girndt M, Sester U, Kaul H, Köhler H (1998) Production of proinflammatory and regulatory monokines in hemodialysis patients shown at a single cell level. J Am Soc Nephrol 9:1689–1696

    Google Scholar 

  9. Haaber AB, Eidemak I, Jensen T et al (1995) Vascular endothelial cell function and cardiovascular risk factors in patients with chronic renal failure. J Am Soc Nephrol 5:1581–1584

    Google Scholar 

  10. Kielstein JT et al (1999) Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease. J Am Soc Nephrol 10:594–600

    Google Scholar 

  11. Locatelli F et al (2009) Effect of membrane permeability on survival of hemodialysis patients. J Am Soc Nephrol 20:645–654

    Google Scholar 

  12. Longenecker JC et al (2002) Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE study. J Am Soc Nephrol 13:1918–1927

    Google Scholar 

  13. Mak RH, Cheung W, Cone RD, Marks DL (2006) Mechanisms of disease: Cytokine and adipokine signaling in uremic cachexia. Nat Clin Pract Nephrol 2:527–534

    Article  PubMed  CAS  Google Scholar 

  14. Nangaku M, Eckardt KU (2006) Pathogenesis of renal anemia. Semin Nephrol 26:261–268

    Article  PubMed  CAS  Google Scholar 

  15. Pupim LB, Caglar K, Hakim RM et al (2004) Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int 66:2054–2060

    Article  PubMed  Google Scholar 

  16. Ridker PM, Cushman M, Stampfer MJ et al (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–979

    Google Scholar 

  17. Rocco MV et al (2011) The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int 80:1080–1091

    Article  PubMed  Google Scholar 

  18. US Renal Data System (2010) USRDS 2009 Annual Data Report: atlas of end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda/MD

  19. Ulrich C, Heine GH, Seibert E et al (2010) Circulating monocyte subpopulations with high expression of angiotensin-converting enzyme predict mortality in patients with end-stage renal disease. Nephrol Dial Transplant 25:2265–2272

    Article  PubMed  CAS  Google Scholar 

  20. Ulrich C, Seibert E, Heine GH et al (2011) Monocyte angiotensin converting enzyme expression may be associated with atherosclerosis rather than arteriosclerosis in hemodialysis patients. Clin J Am Soc Nephrol 6:505–511

    Article  PubMed  CAS  Google Scholar 

  21. Vanholder R, Baurmeister U, Brunet P et al (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19:863–870

    Google Scholar 

  22. Wahl P, Wolf M (2012) FGF23 in chronic kidney disease. Adv Exp Med Biol 728:107–125

    Article  PubMed  Google Scholar 

  23. Zimmermann J, Herrlinger S, Pruy A et al (1999) Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 55:648–658

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Girndt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girndt, M. Klinische Probleme der Urämie. Internist 53, 817–822 (2012). https://doi.org/10.1007/s00108-011-3013-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-011-3013-2

Schlüsselwörter

Keywords

Navigation