Der Internist

, Volume 53, Issue 4, pp 408–418 | Cite as

Klinik und Genetik der hypertrophen und dilatativen Kardiomyopathie

Schwerpunkt

Zusammenfassung

Primäre Kardiomyopathien sind mit einer geschätzten Prävalenz von 0,3–0,4% in der Bevölkerung keine seltenen Erkrankungen. Sie gehören zu den häufigsten Ursachen der systolischen Herzinsuffizienz und des plötzlichen Herztods bei unter 35-Jährigen. Durch molekulargenetische Untersuchungen konnten bis heute 49 Krankheitsgene der hypertrophen und dilatativen Kardiomyopathie identifiziert werden, wobei häufig Proteine des Sarkomers, der kardialen Z-Scheibe und des Zytoskeletts betroffen sind. Durch neue genetische Analyseverfahren, die auf dem „next generation sequencing“ basieren, ist es nun erstmals möglich, die Vielzahl bekannter Krankheitsgene umfassend zu untersuchen.

Auf die Diagnosestellung einer Kardiomyopathie bei einem Indexpatienten sollte immer eine klinische Untersuchung der Familie folgen, um frühzeitig erkrankte Familienmitglieder erkennen und einer kardiologischen Betreuung zuführen zu können. Durch eine genetische Testung in der Familie des Indexpatienten ist eine Identifikation von Mutationsträgern mit bis zu diesem Zeitpunkt unauffälligem klinischem Phänotyp möglich. Die genetische Charakterisierung erleichtert weiterhin die Differenzialdiagnose und Risikostratifizierung der betroffenen Patienten.

Schlüsselwörter

Hypertrophe Kardiomyopathie Dilatative Kardiomyopathie Genetische Testung DNA-Sequenzanalyse Myokard 

Clinical and genetic aspects of hypertrophic and dilated cardiomyopathy

Abstract

Primary cardiomyopathies are frequent heart diseases with an estimated prevalence of 0.3–0.4% in the general population, significantly contributing to systolic heart failure and sudden cardiac death in the young. Molecular genetic studies have identified 49 different disease genes for hypertrophic and dilated cardiomyopathy, often involving proteins of the sarcomere, the cardiac Z-disc and the cytoskeleton. With the development of new, advanced technologies based on next-generation sequencing, it is now possible to efficiently screen all known disease genes in an individual patient.

The clinical workup of cardiomyopathies should always include the investigation of the patient’s family to account for the familial aggregation of cardiomyopathies and identify diseased as well as asymptomatic carriers of mutations. The detection of specific genotypes facilitates diagnostic classification and can improve risk stratification in affected patients.

Keywords

Cardiomyopathy, hypertrophic Cardiomyopathy, dilated Genetic testing Sequence analysis, DNA Myocardium 

Literatur

  1. 1.
    Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 54:201–211Google Scholar
  2. 2.
    Daw EW, Chen SN, Czernuszewicz G et al (2007) Genome-wide mapping of modifier chromosomal loci for human hypertrophic cardiomyopathy. Hum Mol Genet 16:2463–2471PubMedCrossRefGoogle Scholar
  3. 3.
    Ehlermann P, Lehrke S, Papavassiliu T et al (2011) Sudden cardiac death in a patient with lamin A/C mutation in the absence of dilated cardiomyopathy or conduction disease. Clin Res Cardiol 100:547–551PubMedCrossRefGoogle Scholar
  4. 4.
    Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276Google Scholar
  5. 5.
    Elliott P, Baker R, Pasquale F et al (2011) Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease Survey. Heart 97:1957–1960PubMedCrossRefGoogle Scholar
  6. 6.
    Elliott P, McKenna WJ (2004) Hypertrophic cardiomyopathy. Lancet 363:1881–1891PubMedCrossRefGoogle Scholar
  7. 7.
    Elliott PM, Gimeno JR, Thaman R et al (2006) Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart 92:785–791PubMedCrossRefGoogle Scholar
  8. 8.
    Eng CM, Guffon N, Wilcox WR et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med 345:9–16Google Scholar
  9. 9.
    Fatkin D, Otway R, Richmond Z (2010) Genetics of dilated cardiomyopathy. Heart Fail Clin 6:129–140PubMedCrossRefGoogle Scholar
  10. 10.
    Frey N, Luedde M, Katus HA (2011) Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9:91–100PubMedCrossRefGoogle Scholar
  11. 11.
    Friedrichs F, Zugck C, Rauch GJ et al (2009) HBEGF, SRA1, and IK: three cosegregating genes as determinants of cardiomyopathy. Genome Res 19:395–403PubMedCrossRefGoogle Scholar
  12. 12.
    Geisterfer-Lowrance AA, Kass S, Tanigawa G et al (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006PubMedCrossRefGoogle Scholar
  13. 13.
    Gersh BJ, Maron BJ, Bonow RO et al (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 58:e212–260Google Scholar
  14. 14.
    Girolami F, Ho CY, Semsarian C et al (2010) Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol 55:1444–1453Google Scholar
  15. 15.
    Haas J, Katus HA, Meder B (2011) Next-generation sequencing entering the clinical arena. Mol Cell Probes 25:206–211PubMedCrossRefGoogle Scholar
  16. 16.
    Hassel D, Dahme T, Erdmann J et al (2009) Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat Med 15:1281–1288PubMedCrossRefGoogle Scholar
  17. 17.
    Janssens AC, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–173PubMedCrossRefGoogle Scholar
  18. 18.
    Kawahara C, Tsutamoto T, Nishiyama K et al (2011) Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J 75:656–661Google Scholar
  19. 19.
    Kelly M, Semsarian C (2009) Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circ Cardiovasc Genet 2:182–190PubMedCrossRefGoogle Scholar
  20. 20.
    Lehrke S, Lossnitzer D, Schob M et al (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97:727–732PubMedCrossRefGoogle Scholar
  21. 21.
    Lind JM, Chiu C, Ingles J et al (2008) Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 45:217–222Google Scholar
  22. 22.
    Malhotra R, Mason PK (2009) Lamin A/C deficiency as a cause of familial dilated cardiomyopathy. Curr Opin Cardiol 24:203–208PubMedCrossRefGoogle Scholar
  23. 23.
    Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816PubMedCrossRefGoogle Scholar
  24. 24.
    Meder B, Haas J, Keller A et al (2011) Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet 4:110–122PubMedCrossRefGoogle Scholar
  25. 25.
    Meder B, Katus H, Rottbauer W (2009) Genetik der hypertrophischen Kardiomyopathie. J Cardiol 16:274–278Google Scholar
  26. 26.
    Mendell JR, Rodino-Klapac LR, Rosales XQ et al (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 68:629–638PubMedCrossRefGoogle Scholar
  27. 27.
    Messalli G, Imbriaco M, Avitabile G et al (2011) Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing cardiac effects of long-term enzyme replacement therapy. Radiol Med 117:19–28PubMedCrossRefGoogle Scholar
  28. 28.
    Moretti M, Merlo M, Barbati G et al (2010) Prognostic impact of familial screening in dilated cardiomyopathy. Eur J Heart Fail 12:922–927PubMedCrossRefGoogle Scholar
  29. 29.
    Muchir A, Reilly SA, Wu W et al (2011) Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc Res 93:311–319PubMedCrossRefGoogle Scholar
  30. 30.
    Pasotti M, Klersy C, Pilotto A et al (2008) Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol 52:1250–1260Google Scholar
  31. 31.
    Petretta M, Pirozzi F, Sasso L et al (2011) Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol 108:1171–1176PubMedCrossRefGoogle Scholar
  32. 32.
    Refaat MM, Lubitz SA, Makino S et al (2011) Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 9:390–396PubMedCrossRefGoogle Scholar
  33. 33.
    Richard P, Charron P, Carrier L et al (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232PubMedCrossRefGoogle Scholar
  34. 34.
    Rubinshtein R, Glockner JF, Ommen SR et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3:51–58PubMedCrossRefGoogle Scholar
  35. 35.
    Tesson F, Dufour C, Moolman JC et al (1997) The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 29:831–838Google Scholar
  36. 36.
    Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123:1021–1037PubMedCrossRefGoogle Scholar
  37. 37.
    Van Driest SL, Vasile VC, Ommen SR et al (2004) Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol 44:1903–1910Google Scholar
  38. 38.
    Van Rijsingen IA, Arbustini E, Elliott PM et al (2012) Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers. J Am Coll Cardiol 59:493–500Google Scholar
  39. 39.
    Varnava AM, Elliott PM, Baboonian C et al (2001) Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104:1380–1384PubMedCrossRefGoogle Scholar
  40. 40.
    Villard E, Perret C, Gary F et al (2011) A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 32:1065–1076CrossRefGoogle Scholar
  41. 41.
    Wang H, Li Z, Wang J et al (2010) Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy. Am J Hum Genet 87:687–693PubMedCrossRefGoogle Scholar
  42. 42.
    Watkins H, McKenna WJ, Thierfelder L et al (1995) Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332:1058–1064Google Scholar
  43. 43.
    Wu W, Shan J, Bonne G et al (2010) Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta 1802:632–638PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Abteilung Innere Medizin III (Schwerpunkt Kardiologie, Angiologie und Pneumologie)Universitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations