Skip to main content
Log in

Studien mit Surrogatendpunkten

Nutzen und Grenzen in der klinischen Entscheidungsfindung

Surrogate endpoint trials: Benefit and pitfalls for clinical decision making

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Therapieentscheidungen sollten im Idealfall auf die Ergebnisse von randomisierten kontrollierten Studien mit patientenrelevanten Endpunkten gestützt sein. Patientenrelevante Endpunkte sind zum Beispiel Lebensqualität, Herzinfarkt oder Tod. Die Durchführung solcher Studien ist jedoch aufwändig, da oft große Patientenzahlen und eine lange Beobachtungszeit benötigt werden. Deshalb werden oft Studien durchgeführt, bei welchen patientenrelevante Endpunkte durch Surrogatendpunkte ersetzt werden, um Patientenzahl und Beobachtungszeit zu verringern. Surrogatendpunkte sind Ersatzmessparameter für die Lebensqualität, den organischen Funktionszustand oder die Überlebenswahrscheinlichkeit eines Patienten. Die Zulassung von neuen Substanzen beruht oft auf den Ergebnissen von Surrogatendpunktstudien. Unerwartete Nebenwirkungen und der Rückzug von Substanzen, welche aufgrund solcher Studien zugelassen wurden, haben in jüngster Zeit eine Kontorverse über die Bedeutung von Surrogatendpunktstudien entfacht. Wir erläutern anhand von Beispielen Kriterien, mit deren Hilfe Kliniker die Ergebnisse von Surrogatendpunktstudien kritisch gewichten können.

Abstract

Ideally clinicians should base their treatment decisions on results from randomised controlled trials which include patient-important outcomes, such as quality of life, prevented disease events or death. Conducting such trials often involves large sample sizes and extended follow-up periods. Therefore, researchers have aimed to conduct trials with surrogate endpoints by substituting patient-important outcomes in order to reduce sample size and observation time. Surrogate endpoints are outcomes that substitute for direct measures of how a patient feels, functions, or survives. In many countries drugs are approved based on data from surrogate endpoint trials. Recently, a controversy evolved on the reliability of results generated from these trials driven by unanticipated side effects or severe toxicity leading to the withdrawal of drugs that were solely approved based on evidence from surrogate endpoint trials. We present some recent examples and criteria how clinicians can critically evaluate the validity of claims by experts or the pharmaceutical industry in regard to the expected patients’ benefit from drugs approved by results from surrogate endpoint trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95

    Article  Google Scholar 

  2. Bucher HC, Guyatt GH, Cook DJ et al. (1999) Users‘ guides to the medical literature: XIX. Applying clinical trial results. A. How to use an article measuring the effect of an intervention on surrogate end points. Evidence-Based Medicine Working Group. JAMA 282: 771–778

    Article  PubMed  CAS  Google Scholar 

  3. Califf RM, Adams KF, McKenna WJ et al. (1997) A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J 134: 44–54

    Article  PubMed  CAS  Google Scholar 

  4. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Article  Google Scholar 

  5. DiBianco R, Shabetai R, Kostuk W et al. (1989) A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med 320: 677–683

    PubMed  CAS  Google Scholar 

  6. Drexler H, Banhardt U, Meinertz T et al. (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 79: 491–502

    PubMed  CAS  Google Scholar 

  7. Echt DS, Liebson PR, Mitchell LB et al. (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324: 781–788

    PubMed  CAS  Google Scholar 

  8. Garg R, Yusuf S (1995) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA 273: 1450–1456

    Article  PubMed  CAS  Google Scholar 

  9. Grinsztejn B, Nguyen BY, Katlama C et al. (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369: 1261–1269

    Article  PubMed  CAS  Google Scholar 

  10. Haguenauer D, Welch V, Shea B et al. (2000) Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos Int 11: 727–738

    Article  PubMed  CAS  Google Scholar 

  11. Hammer SM, Squires KE, Hughes MD et al. (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. Aids Clinical Trials Group 320 Study Team. N Engl J Med 337: 725–733

    Article  PubMed  CAS  Google Scholar 

  12. Hampton JR, Van Veldhuisen DJ, Kleber FX et al. (1997) Randomised study of effect of ibopamine on survival in patients with advanced severe heart failure. Second Prospective Randomised Study of Ibopamine on Mortality and Efficacy (PRIME II) Investigators. Lancet 349: 971–977

    Article  PubMed  CAS  Google Scholar 

  13. Khaw KT, Wareham N, Bingham S et al. (2004) Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med 141: 413–420

    PubMed  CAS  Google Scholar 

  14. Kuusisto J, Mykkanen L, Pyorala K, Laakso M (1994) NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 43: 960–967

    Article  PubMed  CAS  Google Scholar 

  15. Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  16. Madruga JV, Berger D, McMurchie M et al. (2007) Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet 370: 49–58

    Article  PubMed  CAS  Google Scholar 

  17. Mellors JW, Kingsley LA, Rinaldo CR et al. (1995) Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med 122: 573–579

    PubMed  CAS  Google Scholar 

  18. Montaner JS, Reiss P, Cooper D et al. (1998) A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS Trial. Italy, the Netherlands, Canada and Australia Study. JAMA 279: 930–937

    Article  PubMed  CAS  Google Scholar 

  19. Nathan DM (2007) Finding new treatments for diabetes – how many, how fast... how good? N Engl J Med 356: 437–440

    Article  PubMed  CAS  Google Scholar 

  20. Packer M, Carver JR, Rodeheffer RJ et al. (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The Promise Study Research Group. N Engl J Med 325: 1468–1475

    PubMed  CAS  Google Scholar 

  21. Pi-Sunyer X, Blackburn G, Brancati FL et al. (2007) Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 30: 1374–1383

    Article  PubMed  Google Scholar 

  22. Raz I, Chen Y, Wu M et al. (2008) Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin 24: 537–550

    Article  PubMed  CAS  Google Scholar 

  23. Riegger GA (1991) Effects of quinapril on exercise tolerance in patients with mild to moderate heart failure. Eur Heart J 12: 705–711

    PubMed  CAS  Google Scholar 

  24. Riggs BL, Hodgson SF, O’Fallon WM et al. (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322: 802–809

    PubMed  CAS  Google Scholar 

  25. Saenz A, Fernandez-Esteban I, Mataix A et al. (2005) Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev: CD002966

    Google Scholar 

  26. Selvin E, Marinopoulos S, Berkenblit G et al. (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 141: 421–431

    PubMed  CAS  Google Scholar 

  27. Singh S, Loke YK, Furberg CD (2007) Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298: 1189–1195

    Article  PubMed  CAS  Google Scholar 

  28. Sterne JA, Hernan MA, Ledergerber B et al. (2005) Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort study. Lancet 366: 378–384

    Article  PubMed  CAS  Google Scholar 

  29. Studer M, Briel M, Leimenstoll B et al. (2005) Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch Intern Med 165: 725–730

    Article  PubMed  CAS  Google Scholar 

  30. Sueta CA, Gheorghiade M, Adams KF et al. (1995) Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Epoprostenol Multicenter Research Group. Am J Cardiol 75: 34A–43A

    Article  PubMed  CAS  Google Scholar 

  31. Temple RJ (1995) A regulatory authority’s opinion about surrogate endpoints. In: Nimmo WS, Tucker GT (eds) Clinical measurement in drug evaluation. John Wiley, New York, pp 3–22

  32. UK Prospective Diabetes Study Group (UPDS) (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853

    Article  Google Scholar 

  33. Yee KM, Struthers AD (1997) Can drug effects on mortality in heart failure be predicted by any surrogate measure? Eur Heart J 18: 1860–1864

    PubMed  CAS  Google Scholar 

  34. Yerly S, Perneger TV, Hirschel B et al. (1998) A critical assessment of the prognostic value of HIV-1 RNA levels and CD4+ cell counts in HIV-infected patients. The Swiss HIV Cohort Study. Arch Intern Med 158: 247–252

    Article  PubMed  CAS  Google Scholar 

  35. Yusuf S, Hawken S, Ounpuu S et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364: 937–952

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.C. Bucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucher, H. Studien mit Surrogatendpunkten. Internist 49, 681–687 (2008). https://doi.org/10.1007/s00108-008-2126-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-008-2126-8

Schlüsselwörter

Keywords

Navigation