Skip to main content
Log in

Pathophysiologie des Knochenstoffwechsels

Pathophysiology of bone metabolism

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Osteoporose ist eine multifaktorielle Erkrankung mit einem hohen Risiko für Fragilitätsfrakturen. Die Suszeptibilität ist durch Vererbung, Lebensweise und bestehende Krankheiten determiniert. Knochen wird von Osteoklasten, Osteoblasten und Osteozyten unter Vermittlung lokaler und systemischer Faktoren regeneriert. Insulinähnliche Wachstumsfaktoren, Bone Morphogenetic Proteins und wnt-Proteine sind anabol wirksam. Das RANK/RANK-Ligand- und Osteoprotegerin- (OPG-) System reguliert den Knochenabbau. So wird der Quotient aus OPG und dem osteoklastenstimulierenden RANKL günstig durch Sexualhormone, Vitamin D, Parathormon, Wachstumsfaktoren und mechanische Kräfte beeinflusst. Osteozyten regeln die Knochenmasse über Sclerostin, einen Inhibitor der Knochenbildung. Über Nebenschilddrüsen, Intestinum, Leber und Niere unterliegt die Knochensubstanz einer interaktiven Regulation durch den Kalzium-, Phosphat- und Vitamin-D-Stoffwechsel. Sexualhormone spielen eine wichtige Rolle für den Knochenaufbau in der Adoleszenz und den Verlust in der Menopause/Andropause. Überaktivität von Osteoklasten und/oder funktionelle Defizite von Osteoblasten/Osteozyten können den Knochenverlust und damit die Osteoporose fördern.

Abstract

Osteoporosis is a multifactorial disease entailing a high risk to sustain fragility fractures. Its susceptibility is determined by genetic and environmental factors and underlying diseases. Bone is rebuilt and regenerated by osteoclasts, osteoblasts and osteocytes. Local and systemic growth and differentiation factors such as Insulin-like growth factors, bone morphogenetic proteins and wnt-proteins confer anabolic signals, while the RANK/RANK-Ligand and Osteoprotegerin (OPG) system regulates bone resorption. The ratio of osteoclast stimulating RANKL and its soluble decoy receptor OPG is modulated by sex hormones, vitamin D, parathyroid hormone, local growth factors and mechanical loading. Osteocytes regulate bone mass via the bone formation inhibitor sclerostin. Bone is tightly interconnected with and regulated by the calcium/phosphate/vitamin D system via the parathyroid gland, the gut, liver and kidneys. Sex hormones are important for bone formation during adolescence and their loss in menopause/andropause exaggerates bone resorption. Basically over-activity of osteoclasts and/or functional deficits of osteoblasts can cause negative bone balance and favor osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

BMP:

Bone Morphogenetic Proteins

CSR:

Kalzium-Sensing-Rezeptoren

DKK:

Dickkopf-Protein, Hemmstoff des wnt-Signalwegs

ECM:

Extrazelluläre Matrix

FGF-23:

Fibroblast Growth Factor 23

frz:

Frizzled-Rezeptor

LRP5:

Lipoprotein-related Protein 5, Ko-Rezeptor für frz

MSC:

Mesenchymale Stammzellen

OPG:

Osteoprotegerin

PPAR-γ:

Peroxisome Proliferator-Activated Receptor γ

PTH:

Parathormon

PTHrP:

Parathormon-related Peptide

RANK:

Receptor Activator of NF-κB

RANKL:

Receptor Activator of NF-κB Ligand

sFRP:

Secreted Frizzled Related Proteins, lösliche Rezeptoren für wnt

Wnt:

wnt-Proteine, Liganden für frz und sFRP

Literatur

  1. Allport J (2008) Incidence and prevalence of medication-induced osteoporosis: evidence-based review. Curr Opin Rheumatol 20: 435–441

    Article  PubMed  CAS  Google Scholar 

  2. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102: 1130–1139

    Article  PubMed  CAS  Google Scholar 

  3. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42: 606–615

    Article  PubMed  CAS  Google Scholar 

  4. Boonen S, Bischoff-Ferrari HA, Cooper C et al. (2006) Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. Calcif Tissue Int 78: 257–270

    Article  PubMed  CAS  Google Scholar 

  5. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473: 139–146

    Article  PubMed  CAS  Google Scholar 

  6. Briot K, Roux C (2008) Drug-induced osteoporosis: beyond glucocorticoids. Curr Rheumatol Rep 10: 102–109

    Article  PubMed  Google Scholar 

  7. Brown EM (2007) The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 45: 139–167

    Article  PubMed  CAS  Google Scholar 

  8. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357: 905–916

    Article  PubMed  CAS  Google Scholar 

  9. Duque G (2008) Bone and fat connection in aging bone. Curr Opin Rheumatol 20: 429–434

    Article  PubMed  CAS  Google Scholar 

  10. Duque G, Troen BR (2008) Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 56: 935–941

    Article  PubMed  Google Scholar 

  11. Ebert R, Schutze N, Adamski J, Jakob F (2006) Vitamin D signaling is modulated on multiple levels in health and disease. Mol Cell Endocrinol 248: 149–159

    Article  PubMed  CAS  Google Scholar 

  12. Fonseca JE (2008) Rebalancing bone turnover in favour of formation with strontium ranelate: implications for bone strength. Rheumatology (Oxford) 47 (Suppl 4): iv17–19

    Google Scholar 

  13. Garrett IR (2007) Anabolic agents and the bone morphogenetic protein pathway. Curr Top Dev Biol 78: 127–171

    Article  PubMed  CAS  Google Scholar 

  14. Hamdy NA (2008) Denosumab: RANKL inhibition in the management of bone loss. Drugs Today (Barc) 44: 7–21

    Google Scholar 

  15. Holick MF (2006) The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep 4: 96–102

    Article  PubMed  Google Scholar 

  16. Jakob F (1999) 1,25(OH)2-vitamin D3. The vitamin D hormone. Internist (Berlin) 40: W414–W430

  17. Jakob F (2007) Metabolic bone diseases. Internist (Berlin) 48: 1101–1117

  18. Jakob F (2005) Primary and secondary osteoporosis. The important role of internal medicine in its differential diagnosis. Internist (Berlin) 46(1): S24–S30

  19. Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Miner Metab 24: 176–181

    Article  PubMed  Google Scholar 

  20. Kassem M, Abdallah BM, Saeed H (2008) Osteoblastic cells: differentiation and trans-differentiation. Arch Biochem Biophys 473: 183–187

    Article  PubMed  CAS  Google Scholar 

  21. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118: 421–428

    Article  PubMed  CAS  Google Scholar 

  22. Land C, Schoenau E (2008) Fetal and postnatal bone development: reviewing the role of mechanical stimuli and nutrition. Best Pract Res Clin Endocrinol Metab 22: 107–118

    Article  PubMed  Google Scholar 

  23. Mitrou PN, Albanes D, Weinstein SJ et al. (2007) A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int J Cancer 120: 2466–2473

    Article  PubMed  CAS  Google Scholar 

  24. Noble BS (2008) The osteocyte lineage. Arch Biochem Biophys 473: 106–111

    Article  PubMed  CAS  Google Scholar 

  25. Novack DV, Teitelbaum SL (2008) The osteoclast: friend or foe? Annu Rev Pathol 3: 457–484

    Article  PubMed  CAS  Google Scholar 

  26. Piters E, Boudin E, Van Hul W (2008) Wnt signaling: a win for bone. Arch Biochem Biophys 473: 112–116

    Article  PubMed  CAS  Google Scholar 

  27. Richards JB, Rivadeneira F, Inouye M et al. (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371: 1505–1512

    Article  PubMed  CAS  Google Scholar 

  28. Russell RG, Xia Z, Dunford JE et al. (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117: 209–257

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz AV, Sellmeyer DE (2008) Effect of thiazolidinediones on skeletal health in women with Type 2 diabetes. Expert Opin Drug Saf 7: 69–78

    Article  PubMed  CAS  Google Scholar 

  30. Seufert J, Ebert K, Muller J et al. (2001) Octreotide therapy for tumor-induced osteomalacia. N Engl J Med 345: 1883–1888

    Article  PubMed  CAS  Google Scholar 

  31. Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473: 117–123

    Article  PubMed  CAS  Google Scholar 

  32. Stoch SA, Wagner JA (2008) Cathepsin K inhibitors: a novel target for osteoporosis therapy. Clin Pharmacol Ther 83: 172–176

    Article  PubMed  CAS  Google Scholar 

  33. ten Dijke P, Krause C, de Gorter DJ et al. (2008) Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am 90: 31–35

    Google Scholar 

  34. Zacker RJ (2006) Health-related implications and management of sarcopenia. JAAPA 19: 24–29

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung/en hin: Ich halte Vorträge für die Firmen Servier, Novartis, Lilly, P&G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jakob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, F., Seefried, L. & Ebert, R. Pathophysiologie des Knochenstoffwechsels. Internist 49, 1159–1169 (2008). https://doi.org/10.1007/s00108-008-2113-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-008-2113-0

Schlüsselwörter

Keywords

Navigation