Skip to main content
Log in

Pathogenese der COPD

Pathogenesis of chronic obstructive pulmonary disease

  • Schwerpunkt: COPD
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Nach gegenwärtigem Verständnis steht im Zentrum der Pathogenese der chronisch obstruktiven Lungenerkrankung (COPD) eine Entzündung im Bereich der kleinen Atemwege, die durch inhalierte Partikel und Gase ausgelöst wird. Im Zusammenhang damit kommt es zu einer Störung des physiologischen Gleichgewichts zwischen Proteasen und Proteaseinhibitoren, die im kausalen Zusammenhang mit der Ausbildung eines Lungenemphysems gesehen wird. Daneben scheint oxidativer Stress, der die Entzündung steigern kann, von Bedeutung zu sein. Darüber hinaus wird diskutiert, dass der Verlust von Alveolarzellen durch Apoptose zur Emphysembildung beitragen kann. Schließlich gibt es zahlreiche Anhaltspunkte für eine durch die COPD ausgelöste Entzündung, die für die systemischen Komponenten der Erkrankung zumindest mitverantwortlich sein könnte.

Abstract

It is currently believed that the most important factor in the pathogenesis of chronic obstructive pulmonary disease (COPD) is inflammation of the small airways caused by inhaled particles and gases. In this context, a disturbance of the physiological balance between proteases and antiproteases develops that may cause lung emphysema. Moreover, oxidative stress seems to be important, as it may enhance the inflammatory reaction. The development of emphysema may also involve a loss of alveolar cells by apoptosis. Finally, several studies have indicated that a systemic inflammation is induced by COPD that may be of relevance to the development of systemic components that are observed in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Agusti AGN (2005) COPD, a multicomponent disease: implications for management. Respir Med 99: 670–682

    Article  PubMed  Google Scholar 

  2. Anthonisen NR, Connett JE, Kiley JP et al. (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 272: 1497–1505

    Article  PubMed  Google Scholar 

  3. Bals R (2004) Hiemstra P Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23: 327–333

    Article  PubMed  Google Scholar 

  4. Barnes PJ (2000) Medical progress: chronic obstructive pulmonary disease. N Engl J Med 343: 269–280

    Article  PubMed  Google Scholar 

  5. Behar S, Panosh A, Reicher-Reiss H et al. (1992) Prevalence and prognosis of chronic obstructive pulmonary disease among 5,839 consecutive patients with acute myocardial infarction. SPRINT Study Group. Am J Med 93: 637–641

    Article  PubMed  Google Scholar 

  6. Celli BR, MacNee W and committee members (2004) Standards for he diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23: 932–946

    PubMed  Google Scholar 

  7. Churg A, Wang R, Tai H et al. (2003) Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am J Respir Crit Care Med 167: 1083–1089

    Article  PubMed  Google Scholar 

  8. Dekhuijzen PN, Aben KK, Dekker I et al. (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154: 813–816

    PubMed  Google Scholar 

  9. Demedts IK, Demoor T, Bracke KR et al. (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7: 53

    Article  PubMed  Google Scholar 

  10. Di Stefano A, Capelli A, Lusuardi M et al. (1998) Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 158: 1277–1285

    PubMed  Google Scholar 

  11. Evans MD, Pryor WA (1992) Damage to human alpha-1-proteinase inhibitor by aqueous cigarette tar extracts and the formation of methionine sulfoxide. Chem Res Toxicol 5: 654–660

    Article  PubMed  Google Scholar 

  12. Fehrenbach H, Kasper M, Tschernig T et al. (1999) Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cells in vivo is resolved by differentiation into type I cells and by apoptosis. Eur Respir J 14: 534–544

    Article  PubMed  Google Scholar 

  13. Gan WQ, Man SFP, Senthilselvan A, Sin DD (2004) Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 59: 574–580

    Article  PubMed  Google Scholar 

  14. Gross P, Pfitzer E, Tolker E et al. (1965) Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health11: 50–58

    Google Scholar 

  15. Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 25: 447–454

    Article  PubMed  Google Scholar 

  16. Hogg JC, Chu F, Utokaparch S et al. (2004) The nature of small-airways obstruction in chronic obstructive pulmonary disease. N Engl J Med 350: 2645–2653

    Article  PubMed  Google Scholar 

  17. Ichinose M, Sugiura H, Yamagata S et al. (2000) Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162: 701–706

    PubMed  Google Scholar 

  18. Ito K, Ito M, Eliott WM et al. (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352: 1967–1976

    Article  PubMed  Google Scholar 

  19. Kasahara Y, Tuder RM, Taraseviciene-Stewart L et al. (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106: 1311–1319

    PubMed  Google Scholar 

  20. Kasahara Y, Tuder RM, Cool CD et al. (2001) Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 163: 737–744

    PubMed  Google Scholar 

  21. Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153: 530–534

    PubMed  Google Scholar 

  22. Laurell CB, Eriksson S (1963) The electrophoretic alpha-globulin pattern of serum in alpha-antitrypsin deficiency. Scand J Clin Invest 15: 132–140

    Google Scholar 

  23. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2: 258–266

    Article  PubMed  Google Scholar 

  24. MacNee W, Wiggs B, Belzberg AS, Hogg JC (1989) The effect of cigarette smoking on neutrophil kinetics in human lungs. N Engl J Med 321: 924–928

    PubMed  Google Scholar 

  25. Mador MJ, Bozkanat E (2001) Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2: 216–24

    Article  PubMed  Google Scholar 

  26. Majo J, Ghezzo H, Cosio MG (2001) Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 17: 946–953

    Article  PubMed  Google Scholar 

  27. Pauwels RA, Lofdahl CG, Laitinen LA et al. (1999) Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 340: 1948–1953

    Article  PubMed  Google Scholar 

  28. Petruzzelli S, Puntoni R, Mimotti P et al. (1997) Plasma 3-nitro tyrosine in cigarette smokers. Am J Respir Crit Care Med 156: 1902–1907

    PubMed  Google Scholar 

  29. Russell RE, Culpitt SV, DeMatos C et al. (2002) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26: 602–609

    PubMed  Google Scholar 

  30. Senior RM, Griffin GL, Fliszar CJ et al. (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem 266: 7870–7875

    PubMed  Google Scholar 

  31. Shapiro SD (2000) Vascular atrophy and VEGFR-2 signalling: old theories of pulmonary emphysema meet new data. J Clin Invest 106: 1309–1310

    PubMed  Google Scholar 

  32. Shapiro SD, Ingenito EP (2005) The pathogenesis of chronic obstructive pulmonary disease. Advances in the past hundred years. Am J Respir Cell Mol Biol 32: 367–372

    Article  PubMed  Google Scholar 

  33. Shapiro SD, Goldstein N, Houghton A et al. (2003) Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol 163: 2329–2335

    PubMed  Google Scholar 

  34. Sheifer SE, Rathore SS, Gersh BJ et al. (2000) Time to presentation with acute myocardial infarction in the elderly: associations with race, sex, and socioeconomic characteristics. Circulation 102: 1651–1656

    PubMed  Google Scholar 

  35. Sinn DD, Man SFB (2006) Sceletal muscle weakness reduced exercise tolerance, and COPD: is systemic inflammation the missing link? Thorax 61: 1–3

    Article  PubMed  Google Scholar 

  36. Stanescu D, Sanna A, Veriter C et al. (1996) Airways obstruction, chronic expectoration and rapid decline in FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 51: 267–271

    PubMed  Google Scholar 

  37. Tockman MS, Comstock GW (1989) Respiratory risk factors and mortality: longitudinal studies in Washington County, Maryland. Am Rev Respir Dis 140: S56–S63

    PubMed  Google Scholar 

  38. Voelkel N, Tarasevicene-Stewart L (2005) Emphysema. autoimmune vascular disease. Proc Am Thorac Soc 2: 23–25

    Article  PubMed  Google Scholar 

  39. Vogelmeier C, Biedermann T, Maier K et al. (1997) Comparative loss of activity of recombinant secretory leukoprotease inhibitor and alpha 1-protease inhibitor caused by different forms of oxidative stress. Eur Respir J 10: 2114–2119

    Article  PubMed  Google Scholar 

  40. Wouters EF (2002) Chronic obstructive pulmonary disease. 5: Systemic effects of COPD. Thorax 57: 1067–1670

    Article  PubMed  Google Scholar 

  41. Yokohori N, Aoshiba K, Nagai A (2004) Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 125: 626–632

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vogelmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelmeier, C., Koczulla, R., Fehrenbach, H. et al. Pathogenese der COPD. Internist 47, 885–894 (2006). https://doi.org/10.1007/s00108-006-1691-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-006-1691-y

Schlüsselwörter

Keywords

Navigation