Skip to main content
Log in

Microarray-basierte Transkriptomanalysen bei Infektionskrankheiten

Ein neuer diagnostischer Weg

Microarray-based transcriptome analyses in infectious diseases

A new diagnostic method

  • Individualisierte Therapie – ein Paradigmenwechsel?
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die komplexe Interaktion zwischen einem Erreger und einem Wirt ist die molekulare Grundlage für eine Infektionskrankheit. Die Microarray-Technologie bietet über die Analyse des Transkriptoms ideale Möglichkeiten, diesen Dialog zwischen Erreger und Wirt zu untersuchen. Die Erkenntnisse aus der Entschlüsselung der molekularen Details dieser Interaktionen werden zur Identifizierung und Charakterisierung von virulenzassoziierten Genen des Erregers und Abwehrstrategien des Wirtes führen. Diese Informationen haben das gewaltige Potenzial, unser Verständnis der molekularen Pathogenese von Infektionskrankheiten zu vertiefen und neue Möglichkeiten der Diagnostik, Behandlung, Prognostik und Prävention dieser Erkrankungen zu eröffnen.

Abstract

The complex interaction between a pathogen and a host is the molecular basis of infectious diseases. Microarray technology is a powerful tool to investigate the crosstalk between pathogen and the host as it assesses whole genome expression profiles in response to disease. Deciphering the molecular details on both sides of the host-pathogen interaction will increase our understanding of the pathogenesis of infectious diseases and offer improvements in their diagnosis, treatment, prognosis, and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alizadeh AA, Eisen MB, Davis RE et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511

    Article  PubMed  Google Scholar 

  2. Belcher CE, Drenkow J, Kehoe B et al. (2000) The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc Natl Acad Sci USA 97: 13847–13852

    Article  PubMed  Google Scholar 

  3. Ben Mamoun C, Gluzman IY, Hott C et al. (2001) Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol Microbiol 39: 26–36

    Article  PubMed  Google Scholar 

  4. Blader IJ, Manger ID, Boothroyd JC (2001) Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 276: 24223–24231

    Article  PubMed  Google Scholar 

  5. Boldrick JC, Alizadeh AA, Diehn M et al. (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 99: 972–977

    Article  PubMed  Google Scholar 

  6. Bolt G, Berg K, Blixenkrone-Moller M (2002) Measles virus-induced modulation of host-cell gene expression. J Gen Virol 83: 1157–1165

    PubMed  Google Scholar 

  7. Bryant PA, Venter D, Robins-Brown R, Curtis N (2004) Chips with everything: DNA microarrays in infectious diseases. Lancet 4: 100–111

    Google Scholar 

  8. Campbell CJ, Ghazal P (2004) Molecular signatures for diagnosis of infection: application of microarry technology. J Appl Microbiol 96: 18–23

    Article  PubMed  Google Scholar 

  9. Carter KL, Cahir-McFarland E, Kieff E (2002) Epstein-Barr virus-induced changes in B-lymphocyte gene expression. J Virol 76: 10427–10436

    Article  PubMed  Google Scholar 

  10. Chatterjee SS, Hossain H, Otten S et al. (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74: 1323–1338

    Article  PubMed  Google Scholar 

  11. Chaussabel D, Tolouei SR, McDowell MA et al. (2003) Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102: 672–681

    Article  PubMed  Google Scholar 

  12. Chizhikov V, Rasooly A, Chumakov K, Levy DD (2001) Microarray analysis of microbial virulence factors. Appl Environ Microbiol 67: 3258–3263

    Article  PubMed  Google Scholar 

  13. Chizhikov V, Wagner M, Ivshina A et al. (2002) Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol 40: 2398–2407

    Article  PubMed  Google Scholar 

  14. Chung TP, Laramie JM, Province M, Cobb JP (2002) Functional genomics of critical illness and injury. Crit Care Med 30 [Suppl 1]: S51–S57

    Google Scholar 

  15. Cobb JP, O’Keefe GE (2004) Injury research in the genomic era. Lancet 363: 2076–2083

    Article  PubMed  Google Scholar 

  16. dela Fuente C, Santiago F, Deng L et al. (2002) Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC Biochem 3: 14

    Article  PubMed  Google Scholar 

  17. Detweiler CS, Cunanan DB, Falkow S (2001) Host microarray analysis reveals a role for the salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 98: 5850–5855

    Article  PubMed  Google Scholar 

  18. Dobrindt U, Agerer F, Michaelis K et al. (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185: 1831–1840

    Article  PubMed  Google Scholar 

  19. Goasduff T, Darcissac EC, Vidal V et al. (2002) The transcriptional response of human macrophages to murabutide reflects a spectrum of biological effects for the synthetic immunomodulator. Clin Exp Immunol 128: 474–482

    Article  PubMed  Google Scholar 

  20. Huang Q, Liu D, Majewski P et al. (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870–875

    Article  PubMed  Google Scholar 

  21. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: 281–294

    Article  PubMed  Google Scholar 

  22. Le Naour F, Hohenkirk L, Grolleau A et al. (2001) Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J Biol Chem 276: 17920–17931

    Article  PubMed  Google Scholar 

  23. Leonard EE, Takata T, Blaser MJ et al. (2003) Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J Infect Dis 187: 691–694

    Article  PubMed  Google Scholar 

  24. Lockhart DJ, Dong H, Byrne MC et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675–1680

    Article  PubMed  Google Scholar 

  25. Merrell DS, Butler SM, Qadri F et al. (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417: 642–645

    Article  PubMed  Google Scholar 

  26. Moerer O, Burchardi H (2004) Epidemiologie und Kosten der Sepsis. Klinikarzt 33: 177–180

    Article  Google Scholar 

  27. Nagasako T, Sugiyama T, Mizushima T et al. (2003) Up-regulated Smad5 mediates apoptosis of gastric epithelial cells induced by Helicobacter pylori infection. J Biol Chem 278: 4821–4825

    Article  PubMed  Google Scholar 

  28. Nau GJ, Richmond JF, Schlesinger A et al. (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 99: 1503–1508

    Article  PubMed  Google Scholar 

  29. Okabe H, Satoh S, Kato T et al. (2001) Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 61: 2129–2137

    PubMed  Google Scholar 

  30. Relman DA (2002) New technologies, human-microbe interactions, and the search for previously unrecognized pathogens. J Infect Dis 186 [Suppl 2]: S254–S258

    Google Scholar 

  31. Shaffer AL, Rosenwald A, Hurt EM et al. (2001) Signatures of the immune response. Immunity 15: 375–385

    Article  PubMed  Google Scholar 

  32. Smoot JC, Barbian KD, Van Gompel JJ et al. (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci USA 99: 4668–4673

    Article  PubMed  Google Scholar 

  33. Song YJ, Stinski MF (2002) Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes: a DNA microarray analysis. Proc Natl Acad Sci USA 99: 2836–2841

    PubMed  Google Scholar 

  34. Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110: 1151–1163

    Article  PubMed  Google Scholar 

  35. Stylianou E, Yndestad A, Sikkeland LI et al. (2002) Effects of interferon-alpha on gene expression of chemokines and members of the tumour necrosis factor superfamily in HIV-infected patients. Clin Exp Immunol 130: 279–285

    Article  PubMed  Google Scholar 

  36. Taddeo B, Esclatine A, Roizman B (2002) The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoffgene. Proc Natl Acad Sci USA 99: 17031–17036

    Article  PubMed  Google Scholar 

  37. Teague TK, Hildeman D, Kedl RM et al. (1999) Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci USA 96: 12691–12696

    Article  PubMed  Google Scholar 

  38. Wang D, Coscoy L, Zylberberg M et al. (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99: 15687–15692

    Article  PubMed  Google Scholar 

  39. Whitney AR, Diehn M, Popper SJ et al. (2003) Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 100: 1896–1901

    Article  PubMed  Google Scholar 

  40. Xia M, Bumgarner RE, Lampe MF, Stamm WE (2003) Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J Infect Dis 187: 424–434

    Article  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Herrn PD Dr. Eugen Domann und Herrn Andre Brillon für hilfreiche Diskussionen und die kritische Durchsicht dieser Übersichtsarbeit.

Das dieser Arbeit zugrunde liegende Vorhaben wurde im Rahmen des Nationalen Genomforschungsnetzes NGFN mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 01GS0401 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hossain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, H., Chakraborty, T. Microarray-basierte Transkriptomanalysen bei Infektionskrankheiten. Internist 47 (Suppl 1), S6–S13 (2006). https://doi.org/10.1007/s00108-006-1627-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-006-1627-6

Schlüsselwörter

Keywords

Navigation