Skip to main content
Log in

Kardio-MRT

Ersatz für die diagnostische Koronarangiographie?

Cardiovascular MR — replacement of diagnostic invasive coronary angiography?

  • Schwerpunkt: Neue diagnostische Verfahren
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Mit der kardiovaskulären Magnetresonanztomographie kann in zunehmendem Maße auf eine invasive Darstellung der Herzkranzgefäße verzichtet werden. Mit dieser Methode können sowohl anatomische Informationen über die Koronararterien selbst (z. B. Koronaranomalien, Aneurysmen), funktionelle Informationen über die Myokarddurchblutung (Dobutamin-Stress-MR, Perfusionsmessung), als auch detaillierte Informationen über zelluläre Veränderungen (z. B. Fibrose, Nekrose) gewonnen werden. Eine Darstellung distaler koronarer Gefäße oder kleinerer Seitenäste gelingt jedoch noch nicht ausreichend sicher, sodass bisher kein vollständiger Ersatz der Koronarangiographie gegeben ist.

Abstract

With cardiovascular magnetic resonance imaging (CMR), the necessity of invasive coronary angiography may be increasingly avoided. CMR provides information about the anatomy of the coronaries themselves (e.g. anomalies, aneurysm), functional information on myocardial blood flow (dobutamine-stress-MR, perfusion measurement) and detailed information on cell-mediated alterations (e.g. fibrosis, necrosis). However, visualization of distal coronary vessels and the small side branches is not yet adequate, so that complete replacement of invasive coronary angiography by CMR is not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–d
Abb. 2a, b
Abb. 3a–c
Abb. 4a, b
Abb. 5
Abb. 6a, b
Abb. 7
Abb. 8a–c

Literatur

  1. Task Force of the European Society of Cardiology, in collaboration with the Association of European Paediatric Cardiologists (1998) The clinical role of magnetic resonance in cardiovascular disease. Eur Heart J 19: 19–39

    Article  PubMed  Google Scholar 

  2. Pennell DJ, Sechtem UP, Higgins CB et al. (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25: 1940–1965

    Article  PubMed  Google Scholar 

  3. Lee TH, Boucher CA (2001) Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med 344: 1840–1845

    Article  PubMed  Google Scholar 

  4. Laskey WK, Kimmel S, Krone RJ (2000) Contemporary trends in coronary intervention: a report from the Registry of the Society for Cardiac Angiography and Interventions. Catheter Cardiovasc Interv 49: 19–22

    Article  PubMed  Google Scholar 

  5. Mannebach H, Horstkotte D (2004) 19th report of performance statistics of heart catheterization laboratories in Germany. Z Kardiol 93: 1022–1025

    Article  PubMed  Google Scholar 

  6. Dissmann W, de Ridder M (2002) The soft science of German cardiology. Lancet 359: 2027–2029

    Article  PubMed  Google Scholar 

  7. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112: 1018–1031

    PubMed  Google Scholar 

  8. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92: 657–671

    PubMed  Google Scholar 

  9. Nagel E, Lehmkuhl HB, Bocksch W et al. (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99: 763–770

    PubMed  Google Scholar 

  10. Wahl A, Paetsch I, Roethemeyer S, Klein C, Fleck E, Nagel E (2004) High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 233: 210–216

    PubMed  Google Scholar 

  11. Wahl A, Paetsch I, Gollesch A et al. (2004) Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J 25: 1230–1236

    Article  PubMed  Google Scholar 

  12. Nagel E, Lorenz C, Baer F et al. (2001) Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson 3: 267–281

    Article  PubMed  Google Scholar 

  13. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109: 2172–2174

    Article  PubMed  Google Scholar 

  14. Al-Saadi N, Nagel E, Gross M et al. (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101: 1379–1383

    PubMed  Google Scholar 

  15. Al-Saadi N, Nagel E, Gross M, Schnackenburg B, Paetsch I, Klein C, Fleck E (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36: 1557–1564

    Article  PubMed  Google Scholar 

  16. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108: 432–437

    Article  PubMed  Google Scholar 

  17. Schwitter J, Nanz D, Kneifel S et al. (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103: 2230–2235

    PubMed  Google Scholar 

  18. Wolff SD, Schwitter J, Coulden R et al. (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110: 732–737

    Article  PubMed  Google Scholar 

  19. Giang TH, Nanz D, Coulden R et al. (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25: 1657–1665

    Article  PubMed  Google Scholar 

  20. Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P, Pennell DJ (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346: 1948–1953

    Article  PubMed  Google Scholar 

  21. Meaney JF, Prince MR, Nostrant TT, Stanley JC (1997) Gadolinium-enhanced MR angiography of visceral arteries in patients with suspected chronic mesenteric ischemia. J Magn Reson Imaging 7: 171–176

    PubMed  Google Scholar 

  22. Pereles FS, McCarthy RM, Baskaran V, Carr JC, Kapoor V, Krupinski EA, Finn JP (2002) Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology 223: 270–274

    PubMed  Google Scholar 

  23. Sommer T, Fehske W, Holzknecht N et al. (1996) Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology 199: 347–352

    PubMed  Google Scholar 

  24. Post JC, van Rossum AC, Bronzwaer JG, de Cock CC, Hofman MB, Valk J, Visser CA (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92: 3163–3171

    PubMed  Google Scholar 

  25. Taylor AM, Thorne SA, Rubens MB et al. (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation 101: 1670–1678

    PubMed  Google Scholar 

  26. McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ (1995) Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation 92: 3158–3162

    PubMed  Google Scholar 

  27. Bunce NH, Lorenz CH, Keegan J, Lesser J, Reyes EM, Firmin DN, Pennell DJ (2003) Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology 227: 201–208

    PubMed  Google Scholar 

  28. Casolo G, Del Meglio J, Rega L, Manta R, Margheri M, Villari N, Gensini G (2005) Detection and assessment of coronary artery anomalies by three-dimensional magnetic resonance coronary angiography. Int J Cardiol 103: 317–322

    Article  PubMed  Google Scholar 

  29. Greil GF, Stuber M, Botnar RM et al. (2002) Coronary magnetic resonance angiography in adolescents and young adults with kawasaki disease. Circulation 105: 908–911

    Article  PubMed  Google Scholar 

  30. Danias G, Hauser TH, Katsimaglis G, Botnar RM, Manning WJ (2003) Coronary magnetic resonance angiography. Herz 28: 90–98

    Article  PubMed  Google Scholar 

  31. Langerak SE, Vliegen HW, Jukema JW et al. (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107: 1502–1508

    Article  PubMed  Google Scholar 

  32. Kim WY, Danias G, Stuber M et al. (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345: 1863–1869

    Article  PubMed  Google Scholar 

  33. Danias G, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44: 1867–1876

    Article  PubMed  Google Scholar 

  34. Klem I, Sechtem U (2004) Is coronary magnetic resonance angiography already a clinically useful diagnostic tool? Dtsch Med Wochenschr 129: 2733–2738

    Article  PubMed  Google Scholar 

  35. Kelle S, Hug J, Kohler U, Fleck E, Nagel E (2005) Potential intrinsic error of noninvasive coronary angiography. J Cardiovasc Magn Reson 7: 401–407

    PubMed  Google Scholar 

  36. Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Gebker R, Fleck E, Nagel E (2005) Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J 26: 2313–2319

    Article  PubMed  Google Scholar 

  37. Nagel E, Thouet T, Klein C et al. (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 107: 1738–1743

    Article  PubMed  Google Scholar 

  38. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E (2004) Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 232: 669–676

    PubMed  Google Scholar 

  39. Huber ME, Paetsch I, Schnackenburg B et al. (2003) Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med 49: 115–121

    Article  PubMed  Google Scholar 

  40. Herborn CU, Schmidt M, Bruder O, Nagel E, Shamsi K, Barkhausen J (2004) MR coronary angiography with SH L 643 A: initial experience in patients with coronary artery disease. Radiology 233: 567–573

    PubMed  Google Scholar 

  41. Sommer T, Hackenbroch M, Hofer U et al. (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234: 718–725

    PubMed  Google Scholar 

  42. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106: 296–299

    Article  PubMed  Google Scholar 

  43. Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48: 425–429

    Article  PubMed  Google Scholar 

  44. Hundley WG, Li HF, Lange RA, Pfeifer DP et al. (1995) Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation 91: 2955–2960

    PubMed  Google Scholar 

  45. Thiele H, Nagel E, Paetsch I et al. (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14: 362–367

    Article  PubMed  Google Scholar 

  46. Hoppe UC, Dederichs B, Deutsch HJ, Theissen P, Schicha H, Sechtem U (1996) Congenital heart disease in adults and adolescents: comparative value of transthoracic and transesophageal echocardiography and MR imaging. Radiology 199: 669–677

    PubMed  Google Scholar 

  47. Nagel E, Kelle S, Fleck E (2005) Indications for cardiovascular magnetic resonance imaging. Med Klin 100: 219–225

    Article  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fleck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelle, S., Nagel, E. & Fleck, E. Kardio-MRT. Internist 47, 18–27 (2006). https://doi.org/10.1007/s00108-005-1535-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-005-1535-1

Schlüsselwörter

Keywords

Navigation