Skip to main content
Log in

Molekulare Diagnostik des Diabetes mellitus

Molecular diagnosis of diabetes mellitus

  • Schwerpunkt: Neue diagnostische Verfahren
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Diabetes mellitus ist der Sammelbegriff für heterogene Störungen des Stoffwechsels, deren Leitsymptom die chronische Hyperglykämie ist. Beim Typ-1- und Typ-2-Diabetes mellitus handelt es sich um polygene Erkrankungen, die sich unter dem Einfluss bestimmter Umweltfaktoren manifestieren. Eine genetische Diagnose dieser Diabetesformen ist nicht möglich, wohl aber können genetische Varianten einzelner Suszeptibilitätsgene im Rahmen spezieller wissenschaftlicher Fragestellungen untersucht werden. Außerdem gibt es definierte genetische Defekte im Sinne monogener Diabetesformen, die zu gestörter β-Zellfunktion oder verminderter Insulinwirkung führen. Eine genetische Untersuchung erlaubt hier die korrekte Klassifikation des Diabetes, ermöglicht eine humangenetische Beratung und eine adäquate Therapieeinleitung.

Abstract

Diabetes mellitus comprises a heterogeneous group of disorders characterized by chronic hyperglycemia. Type 1 and type 2 diabetes result from alterations of various genes, each having partial and additive effects. Thus, the inheritance pattern is rather complex, and environmental factors play an important role in the manifestation and clinical course of the disease. There is no genetic test to diagnose diabetes mellitus type 1 or type 2. However, certain susceptibility genes and genetic variations can be examined for specific scientific questions. Furthermore, defined genetic defects exist of pancreatic β-cell function (maturity-onset diabetes of the young, mitochondrial diabetes) and insulin action (e.g. insulin resistance syndromes and lipodystrophy syndromes) resembling monogenic disorders. In these cases, genetic tests are crucial for the correct classification of the type of diabetes, genetic counseling, and initiation of the appropriate therapy regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Atkinson MA, Maclaren NK (1994) The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331: 1428–1436

    Article  PubMed  Google Scholar 

  2. She JX, Marron MP (1998) Genetic susceptibility factors in type 1 diabetes: linkage, disequilibrium and functional analyses. Curr Opin Immunol 10: 682–689

    Article  PubMed  Google Scholar 

  3. Cox NJ, Wapelhorst B, Morrison VA et al. (2001) Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 69: 820–830

    Article  PubMed  Google Scholar 

  4. Pugliese A (2004) Genetics of type 1 diabetes. Endocrinol Metab Clin North Am 33: 1–16

    Article  PubMed  Google Scholar 

  5. Davies JL, Kawaguchi Y, Bennett ST et al. (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371: 130–136

    Article  PubMed  Google Scholar 

  6. Hashimoto L, Habita C, Beressi JP et al. (1994) Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 371: 161–164

    Article  PubMed  Google Scholar 

  7. Harrison LC (2001) Risk assessment, prediction and prevention of type 1 diabetes. Pediatr Diabetes 2: 71–82

    Article  PubMed  Google Scholar 

  8. Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56: 69–89

    Article  PubMed  Google Scholar 

  9. Mein CA, Esposito L, Dunn MG et al. (1998) A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 19: 297–300

    Article  PubMed  Google Scholar 

  10. Vafiadis P, Bennett ST, Todd JA et al. (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM 2 locus. Nat Genet 15: 289–292

    Article  PubMed  Google Scholar 

  11. Chentoufi AA, Polychronakos C (2002) Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM 2 locus may predispose to diabetes. Diabetes 51: 1383–1390

    PubMed  Google Scholar 

  12. Thebault-Baumont K, Dubois-Laforgue D, Krief P et al. (2003) Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest 111: 851–857

    Article  PubMed  Google Scholar 

  13. Donner H, Rau H, Walfish PG et al. (1997) CTLA4 alanine-17 confers genetic susceptibility to Graves‘ disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 82: 143–146

    Article  PubMed  Google Scholar 

  14. Marron MP, Raffel LJ, Garchon HJ et al. (1997) Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet 6: 1275–1282

    Article  PubMed  Google Scholar 

  15. Bottini N, Musumeci L, Alonso A et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36: 337–338

    Article  PubMed  Google Scholar 

  16. Zheng W, She JX (2005) Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 54: 906–908

    PubMed  Google Scholar 

  17. Guo D, Li M, Zhang Y, Yang P et al. (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837–841

    Article  PubMed  Google Scholar 

  18. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279: 27233–27238

    Article  PubMed  Google Scholar 

  19. Grohmann U, Orabona C, Fallarino F et al. (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3: 1097–1101

    Article  PubMed  Google Scholar 

  20. Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189: 111–121

    Article  PubMed  Google Scholar 

  21. Li M, Guo D, Isales CM, Eizirik DL, Atkinson M, She JX, Wang CY (2005) SUMO wrestling with type 1 diabetes. J Mol Med 83: 504–513

    Article  PubMed  Google Scholar 

  22. Bonifacio E, Hummel M, Walter M, Schmid S, Ziegler AG (2004) IDDM 1 and multiple family history of type 1 diabetes combine to identify neonates at high risk for type 1 diabetes. Diabetes Care 27: 2695–2700

    PubMed  Google Scholar 

  23. Zimmet P, Shaw J, Alberti KG (2003) Preventing Type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view. Diabet Med 20: 693–702

    Article  PubMed  Google Scholar 

  24. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M; Consensus Workshop Group (2004) Type 2 diabetes in the young: the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care 27: 1798–1811

    PubMed  Google Scholar 

  25. Bottcher Y, Kovacs P, Tonjes A, Stumvoll M (2005) Genetics of type 2 diabetes. Internist 46: 741–749

    Article  PubMed  Google Scholar 

  26. Parikh H, Groop L (2004) Candidate genes for type 2 diabetes. Rev Endocr Metab Disord 5: 151–176

    Article  PubMed  Google Scholar 

  27. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33: 177–182

    Article  PubMed  Google Scholar 

  28. Ledermann HM (1995) Maturity-onset diabetes of the young (MODY) at least ten times more common in Europe than previously assumed? Diabetologia 38: 1482

    Article  Google Scholar 

  29. Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345: 971–980

    Article  PubMed  Google Scholar 

  30. Velho G, Robert JJ (2002) Maturity-onset diabetes of the young (MODY): genetic and clinical characteristics. Horm Res 57 (Suppl 1): 29–33

    Article  PubMed  Google Scholar 

  31. Yamagata K, Furuta H, Oda N et al. (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature 384: 458–460

    Google Scholar 

  32. Lindner T, Gragnoli C, Furuta H et al. (1997) Hepatic function in a family with a nonsense mutation (R154X) in the hepatocyte nuclear factor-4alpha/MODY1 gene. J Clin Invest 100: 1400–1405

    PubMed  Google Scholar 

  33. Barrio R, Bellanne-Chantelot C, Moreno JC, Morel V, Calle H, Alonso M, Mustieles C (2002) Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocrinol Metab 87: 2532–2539

    Article  PubMed  Google Scholar 

  34. Yamagata K, Oda N, Kaisaki PJ et al. (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384: 455–458

    Article  PubMed  Google Scholar 

  35. Gidh-Jain M, Takeda J, Xu LZ et al. (1993) Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A 90: 1932–1936

    PubMed  Google Scholar 

  36. Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17: 138–139

    Article  PubMed  Google Scholar 

  37. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8: 2001–2008

    Article  PubMed  Google Scholar 

  38. Horikawa Y, Iwasaki N, Hara M et al. (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17: 384–385

    Article  PubMed  Google Scholar 

  39. Malecki MT, Jhala US, Antonellis A et al. (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23: 323–328

    Article  PubMed  Google Scholar 

  40. Maassen JA, ‚T Hart LM, Van Essen E et al. (2004) Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53 (Suppl 1): 103–109

    Google Scholar 

  41. Maassen JA, Kadowaki T (1996) Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia 39: 375–382

    PubMed  Google Scholar 

  42. Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348: 651–653

    Article  PubMed  Google Scholar 

  43. Krook A, Brueton L, O’Rahilly S (1993) Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet 342: 277–278

    Article  PubMed  Google Scholar 

  44. Accili D, Frapier C, Mosthaf L et al. (1989) A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes. EMBO J 8: 2509–2517

    PubMed  Google Scholar 

  45. Moller DE, Flier JS (1988) Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). N Engl J Med 319: 1526–1529

    PubMed  Google Scholar 

  46. Magre J, Delepine M, Khallouf E et al. (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28: 365–370

    Article  PubMed  Google Scholar 

  47. Agarwal AK, Arioglu E, De Almeida S et al. (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31: 21–23

    Article  PubMed  Google Scholar 

  48. Shackleton S, Lloyd DJ, Jackson SN et al. (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24: 153–156

    Article  PubMed  Google Scholar 

  49. Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9: 109–112

    Article  PubMed  Google Scholar 

  50. Barroso I, Gurnell M, Crowley VE et al. (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402: 880–883

    PubMed  Google Scholar 

  51. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51: 3586–3590

    PubMed  Google Scholar 

  52. Novelli G, Muchir A, Sangiuolo F et al. (2002) Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71: 426–431

    Article  PubMed  Google Scholar 

  53. Caux F, Dubosclard E, Lascols O et al. (2003) A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab 88: 1006–1013

    Article  PubMed  Google Scholar 

  54. Savage DB, Agostini M, Barroso I et al. (2002) Digenic inheritance of severe insulin resistance in a human pedigree. Nat Genet 31: 379–384

    PubMed  Google Scholar 

  55. Collin GB, Marshall JD, Ikeda A et al. (2002) Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet 31: 74–78

    PubMed  Google Scholar 

  56. Hearn T, Renforth GL, Spalluto C et al. (2002) Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet 31: 79–83

    PubMed  Google Scholar 

  57. Yu CE, Oshima J, Fu YH et al. (1996) Positional cloning of the Werner’s syndrome gene. Science 272: 258–262

    PubMed  Google Scholar 

  58. Diamanti-Kandarakis E, Piperi C (2005) Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update 11: 631–643

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Göke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broedl, U.C., Göke, B. Molekulare Diagnostik des Diabetes mellitus. Internist 47, 47–54 (2006). https://doi.org/10.1007/s00108-005-1530-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-005-1530-6

Schlüsselwörter

Keywords

Navigation