Skip to main content
Log in

DNA-Chips in der Diagnostik hämatologischer Neoplasien

Gene expression profiling in hematological malignancies

  • Schwerpunkt: Neue diagnostische Verfahren
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Unter den hämatologischen Neoplasien konnten in den letzten Jahren durch Genexpressionsanalysen mit DNA-Chips neue, biologisch und klinisch relevante Tumorgruppen identifiziert werden. Die heterogene Gruppe der diffusen, großzelligen B-Zelllymphome konnte in einen „Keimzentrums-B-Zelltyp“ und einen „aktivierten B-Zelltyp“ untergliedert werden. Beide Subgruppen weisen eine unterschiedliche Pathogenese und einen divergenten klinischen Verlauf auf. Bei den Leukämien konnten bestehende, auf morphologischen, zytogenetischen, molekularen und immunphänotypischen Merkmalen beruhende Einteilungen auf Genexpressionsebene bestätigt werden, aber auch neue molekulare Subgruppen definiert werden. In retrospektiven Lymphom- und Leukämiestudien wurden robuste Gensignaturen definiert, die zum Zeitpunkt der Diagnose eine Aussage über den klinischen Verlauf der Erkrankung erlauben. Aufgrund des großen Potenzials dieser Technologie erscheint auch ein zukünftiger Einsatz in der Routinediagnostik möglich.

Abstract

In hematological malignancies, gene expression profiling using DNA-microarrays led to the discovery of novel lymphoma and leukemia subgroups. The heterogeneous entity of diffuse large B-cell lymphoma could be subdivided into the germinal center B-cell-like and the activated B-cell-like subtype which differ in pathogenesis and clinical behavior. In leukemia, existing entities defined by morphological, cytogenetic, molecular and immunophenotypic criteria were confirmed on the global gene expression level; in addition, new important molecular subgroups could be identified. In retrospective clinical lymphoma and leukemia studies, robust gene expression signatures were discovered that predict the clinical course at the time of diagnosis. Given the huge potential of the DNA-microarray technology, application in the routine diagnostic setting appears possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Coiffier B (2001) Diffuse large cell lymphoma. Curr Opin Oncol 13: 325–334

    Article  PubMed  Google Scholar 

  2. Rosenwald A, Wright G, Chan WC et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947

    Article  PubMed  Google Scholar 

  3. Bea S, Zettl A, Wright G et al. (2005) Diffuse Large B-Cell Lymphoma Subgroups Have Distinct Genetic Profiles that Influence Tumor Biology and Improve Gene Expression-Based Survival Prediction. Blood [Epub ahead of print]

  4. Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194: 1861–1874

    Article  PubMed  Google Scholar 

  5. Campo E, Raffeld M, Jaffe ES (1999) Mantle-cell lymphoma. Semin Hematol 36: 115–127

    PubMed  Google Scholar 

  6. Bosch F, Lopez-Guillermo A, Campo E et al. (1998) Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer 82: 567–575

    Article  PubMed  Google Scholar 

  7. Rosenwald A, Wright G, Wiestner A et al. (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3: 185–197

    Article  PubMed  Google Scholar 

  8. Jaffe ES, Stein H, Vardiman JW (2001) World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

  9. Dave SS, Wright G, Tan B et al. (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351: 2159–2169

    Article  PubMed  Google Scholar 

  10. Hamblin T (2002) Chronic lymphocytic leukaemia: one disease or two? Ann Hematol 81: 299–303

    Article  PubMed  Google Scholar 

  11. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94: 1848–1854

    PubMed  Google Scholar 

  12. Wiestner A, Rosenwald A, Barry TS et al. (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101: 4944–4951

    Article  PubMed  Google Scholar 

  13. Rosenwald A, Alizadeh AA, Widhopf G et al. (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194: 1639–1647

    Article  PubMed  Google Scholar 

  14. Crespo M, Bosch F, Villamor N et al. (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348: 1764–1775

    Article  PubMed  Google Scholar 

  15. Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341: 1051–1062

    Article  PubMed  Google Scholar 

  16. Haferlach T, Schoch C, Loffler H et al. (2003) Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol 21: 256–265

    Article  PubMed  Google Scholar 

  17. Schnittger S, Schoch C, Dugas M et al. (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100: 59–66

    Article  PubMed  Google Scholar 

  18. Golub TR, Slonim DK, Tamayo P et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537

    Article  PubMed  Google Scholar 

  19. Haferlach T, Kohlmann A, Schnittger S et al. (2005) Global approach to the diagnosis of leukemia using gene expression profiling. Blood 106: 1189–1198

    Article  PubMed  Google Scholar 

  20. Bullinger L, Dohner K, Bair E et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350: 1605–1616

    Article  PubMed  Google Scholar 

  21. Valk PJ, Verhaak RG, Beijen MA et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628

    Article  PubMed  Google Scholar 

  22. Schoch C, Kohlmann A, Schnittger S et al. (2002) Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 99: 10.008–10.013

    Article  PubMed  Google Scholar 

  23. Armstrong SA, Kung AL, Mabon ME et al. (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3: 173–183

    Article  PubMed  Google Scholar 

  24. Yeoh EJ, Ross ME, Shurtleff SA et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143

    Article  PubMed  Google Scholar 

  25. Ross ME, Zhou X, Song G et al. (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102: 2951–2959

    Article  PubMed  Google Scholar 

  26. Ferrando AA, Neuberg DS, Staunton J et al. (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1: 75–87

    Article  PubMed  Google Scholar 

  27. Hofmann WK, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP, Ottmann OG (2002) Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 359: 481–486

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosenwald.

Additional information

A.R. wird mit Mitteln des Interdisziplinären Zentrums für Klinische Forschung (IZKF) der Universität Würzburg gefördert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuring-Buske, M., Hartmann, E.M., Ott, G. et al. DNA-Chips in der Diagnostik hämatologischer Neoplasien. Internist 47, 39–46 (2006). https://doi.org/10.1007/s00108-005-1526-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-005-1526-2

Schlüsselwörter

Keywords

Navigation