Skip to main content
Log in

Neue Therapieansätze bei der prähospitalen und hospitalen Schockbehandlung

Hyperton-hyperonkotische Lösungen und Vasopressin

  • Schwerpunkt: Der Patient mit Schock
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die hochgradige Störung der Hämodynamik im Schock führt zu einer Verringerung des Sauerstoffangebots lebenswichtiger Organe. Wird dieser Zustand nicht rasch behoben, kann es zu einem Multiorganversagen kommen. Neben der Beseitigung der Schockursache, wie z. B. einer Blutung oder eines septischen Fokus, müssen Maßnahmen eingeleitet werden, die zu einer Stabilisierung der Hämodynamik führen. In vielen Fällen gelingt dies durch Flüssigkeitsersatz oder durch Einsatz von Inotropika und Vasopressoren. Beim hypovolämischen Schock konnten hyperton/hyperonkotische Lösungen bisher keine Vorteile gegenüber herkömmlichen Infusionen zeigen, außer in Situationen, in denen nicht sofort genügend Ressourcen für eine primäre Versorgung zur Verfügung stehen. Im Tierexperiment konnte die Hämodynamik mit Vasopressin deutlich besser als mit Volumen stabilisiert werden, wenn eine unstillbare intraabdominelle Blutung vorlag. Auch die Letalität war bei den mit Vasopressin behandelten Tieren signifikant niedriger. Es fehlen aber noch klinische Arbeiten, die diese Ergebnisse bestätigen. Vasopressin trägt im septischen Schock sowohl in niedriger als auch in hoher Dosierung zu einer Stabilisierung der Hämodynamik bei. Allerdings kommt es dabei zu einer Beeinträchtigung der Splanchnikusperfusion. Deshalb kann der Einsatz von Vasopressin im septischen Schock zurzeit nicht empfohlen werden.

Abstract

The extreme disturbance of hemodynamics in shock leads to a minimized oxygen delivery to several vital organs. If this state is not rapidly lifted, a multi-organ-failure can occur. In addition to the removal of the underlying causes, for example, bleeding or septic focus, measures must be started to stabilize hemodynamics. In most cases shock can be successfully treated with standard therapeutic interventions including the use of crystalloid or colloid solutions as well as the infusion of inotropes or vasopressors. Up to now, there is not enough evidence to show that hypertonic/hyperoncotic solutions are better for treating hypovolemic shock than standard infusions, other than in situations, where only an inadequate equipment is available. Experimental data support the use of vasopressin instead of fluid loading in case of uncontrolled intra-abdominal bleeding. According to these studies vasopressin seems to be associated with an improved hemodynamic stabilization and a significantly lower mortality rate. However, no clinical tests have been done so far to confirm these results. In septic shock the plasma-levels of vasopressin are low. It has been shown that the infusion of vasopressin contributes to stabilization of hemodynamics in septic shock, in lower, as well as in higher concentrations. On the other hand vasopressin worsens splanchnic perfusion. Therefore the routine use of vasopressin in the treatment of sepsis can not be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Argenziano M, Choudhri AF, Oz MC, Rose EA, Smith CR, Landry DW (1997) A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation 96 (Suppl): 286–290

    CAS  Google Scholar 

  2. Asfar P, Pierrot M, Veal V et al. (2003) Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med 31: 215–220

    PubMed  Google Scholar 

  3. Asfar P (2003) Reply to the comment on „Terlipressin in chronic hyperdynamic endotoxic shock: Is it safe? Intensive Care Med 29: 855

    Google Scholar 

  4. Baue AE, Tragus ET, Parkins WM (1967) A comparison of isotonic and hypertonic solutions an blood flow and oxygen consumption in the initial treatment of hemorrhagic shock. J Trauma 7: 743–756

    CAS  PubMed  Google Scholar 

  5. Bernadich C, Bandi JC, Bosch J (1998) Effects of F-180, a new selective vasoconstrictor peptide compared with terlipressin and vasopressin on systemic and splanchnic hemodynamics in a rat model of portal hypertension. Hepatology 27: 351–356

    CAS  PubMed  Google Scholar 

  6. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331: 1105–1109

    Google Scholar 

  7. Bittermann H, Triolo J, Lefer AM (1987) Use of hypertonic saline in the treatment of hemorrhage shock. Circ Shock 21: 271–283

    PubMed  Google Scholar 

  8. Bohrmann SW, Fabian, TC, Kudsk KA, Proctor KG (1991) Microcirculatory flow changes after initial resuscitation of hemorrhagic shock with 7,5% hypertonic saline/6% dextran 70. J Trauma 31: 589–600

    PubMed  Google Scholar 

  9. Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit Care Med 24: 163

    CAS  PubMed  Google Scholar 

  10. Bunn F, Roberts I, Tasker R, Akpa E (2001) Hypertonic versus isotonic crystalloid for fluid resuscitation in critically ill patients (Cochrane Review). Cochrane Library

  11. Chernow B, Roth B (1986) Pharmacologic manipulations of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock 18: 141–155

    CAS  PubMed  Google Scholar 

  12. Chiara O, Pelosi P, Brazzi L et al. (2003) Resuscitation from hemorrhagic shock: Experimental model comparing normal saline, dextran, and hypertonic saline solutions. Crit Care Med 31: 1915–1922

    Article  CAS  PubMed  Google Scholar 

  13. De Felippe J, Timoner J, Velasco IT, Lopes OU, Rocha e Silva M (1980) Treatment of refractory hypovolaemic shock by 7,5% sodium chloride injections. Lancet 2: 1002–1004

    PubMed  Google Scholar 

  14. Dünser M, Wenzel V, Mayr AJ, Hasibeder WR (2002) Arginin-Vasopressin im vasodilatatorischen Schock. Anaesthesist 51: 650–659

    Article  Google Scholar 

  15. Dünser MW, Mayr AJ, Ulmer H et al. (2001) The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg 93: 7–13

    PubMed  Google Scholar 

  16. Dünser MW, Mayr AJ, Ulmer H et al. (2003) Arginine Vasopressin in advanced vasodilatory shock. Circulation 107: 2313–2319

    Article  PubMed  Google Scholar 

  17. Eyraud D, Brabant S, Dieudonne N, Fléron MH, Gilles G, Bertrand M, Coriat P (1999) Treatment of intraoperative refractory hypotension with terlipressin in patients chronically treated with an antagonist of the renin-angiotensin system. Anesth Anal 88: 980–984

    CAS  PubMed  Google Scholar 

  18. Fox AW, May RE, Mitch WE (1992) Comparison of peptide and nonpeptide receptor-mediated responses in rat tail artery. J Cardiovasc Pharmacol 20: 282–289

    CAS  PubMed  Google Scholar 

  19. Holcroft JW, Vassar MJ, Turner JE, Derlet RW, Kramer GC (1987) 3% NaCl and 7,5% NaCl/Dextran 70 in the resuscitation of severely injured patients. Ann Surg 206: 279–287

    CAS  PubMed  Google Scholar 

  20. Horton JW, Walker PB (1991) Small-volume hypertonic saline dextran resuscitation from canine endotoxin shock. Ann Surg 214: 64–73

    CAS  PubMed  Google Scholar 

  21. Ioannou G, Doust J, Rockey DC (2001) Terlipressin for acute esophageal variceal hemorrhage (Cochrane Review). Cochrane Database Syst Rev 1: CD002147

    PubMed  Google Scholar 

  22. Kien ND, Kramer GC, White DA (1980) Immediate increase in cardiac contractility following hypertonic saline infusion. Euro Surg Res 22: 293–295

    Google Scholar 

  23. Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A (2003) High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med 31: 2646–2650

    CAS  PubMed  Google Scholar 

  24. Kramer GC, Perron PR, Lindsay DC, Ho HS, Gunther RA, Boyle WA, Holcroft JW (1986) Small-volume resuscitation with hypertonic saline dextran solution. Surgery 100: 239–247

    CAS  PubMed  Google Scholar 

  25. Krausz MM (1995) Controversies in shock research. Hypertonic resuscitation—Pros and cons. Shock 3: 69–72

    CAS  PubMed  Google Scholar 

  26. Kreimeier U, Peter K, Meßmer K (2001) Small volume—large benefit? Anaesthesist 50: 442–449

    Article  CAS  PubMed  Google Scholar 

  27. Kreimeier U, Frey L, Dentz J, Herbel T, Messmer K (1991) Hypertonic saline dextran resuscitation during the initial phase of acute endotoxemia: Effect on regional blood flow. Crit Care Med 19: 801–809

    CAS  PubMed  Google Scholar 

  28. Kreimeier U, Christ F, Kraft D, Lauterjung L, Niklas M, Peter K, Messmer K (1995) Anaphylaxis due to hydroxy-ethyl-starch-reactive antibodies. Lancet 346: 49–50

    Article  CAS  PubMed  Google Scholar 

  29. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345: 588–595

    CAS  PubMed  Google Scholar 

  30. Landry DW, Levin HR, Gallant HM et al. (1997) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95: 1122–1125

    CAS  PubMed  Google Scholar 

  31. Mattox KL, Maningas PA, Moore EE et al. (1991) Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension—the US AUCH multicenter trial. Ann Surg 213: 482–491

    CAS  PubMed  Google Scholar 

  32. Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1990) Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic saline-dextrane reinfusion. Circ Shock 31: 407–418

    CAS  PubMed  Google Scholar 

  33. Mellander S, Johansson B, Gray S, Jonsson O, Lundvall J, Ljung B (1967) The effects of hyperosmolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica 4: 310–322

    CAS  PubMed  Google Scholar 

  34. Messmer K, Kreimeier U (1989) Microcirculatory therapy in shock. Resuscitation (Suppl) 18: S51–S61

  35. Muders F, Elsner D, Jandeleit K et al. (1997) Chronic ACE inhibition by quinapril modulates central vasopressinergic system. Cardiovasc Res 34: 575–581

    Article  CAS  PubMed  Google Scholar 

  36. Nerlich M, Gunther R, Demling RH (1983) Resuscitation from hemorrhagic shock with hyptertonic saline or lactated ringer’s (Effect on the pulmonary and systemic microcirculations). Circ Shock 10: 179–188

    CAS  PubMed  Google Scholar 

  37. Nilsson G, Lindblom P, Ohlin M, Berling R, Vernersson E (1990) Pharmacokinetics of terlipressin after single i.v. doses to healthy volunteers. Drugs Exp Clin Res 16: 307–314

    CAS  PubMed  Google Scholar 

  38. Nolte D, Bayer M, Lehr HA, Becker M, Krombacher F, Kreimeier U, Messmer K (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 263: H1411–H1416

    CAS  PubMed  Google Scholar 

  39. O’Brien A, Clapp L, Simger M (2002) Terlipressin for norepinephrine-resistant septic shock. Lancet 359: 1209–1210

    Article  CAS  PubMed  Google Scholar 

  40. Pascual JMS, Watson JC, Runyon AE, Wade CE, Kramer GC (1992) Resuscitation of intraoperative hypovolemia: A comparison of normal saline and hyperosmotic/hyperoncotic solutions in swine. Crit Care Med 20: 200–210

    CAS  PubMed  Google Scholar 

  41. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96: 576–582

    CAS  PubMed  Google Scholar 

  42. Pope A, French G, Longnecker DE, Institute of Medicine (IOM) (1999) Fluid resuscitation. State of the science for treating combat casualties and civilian injuries.

  43. Rabinovici R, Krausz MM, Feuerstein G (1991) Control of bleeding is essential for a successful treatment of hemorrhagic shock with 7.5 per cent sodium chloride solution. Surg Gynecol Obstet 173: 98–106

    CAS  PubMed  Google Scholar 

  44. Reed LL, Manglano R, Martin M, Hochman M, Kocka F, Barret J (1991) The effect of hypertonic saline resuscitation on bacterial translocation after hemorrhagic shock in rats. Surgery 110: 685–690

    CAS  PubMed  Google Scholar 

  45. Reinhart K, Rudolph T, Bredle DL, Cain SM (1989) O2-Uptake in bled dogs after resuscitation with hypertonic saline of hydroxyethylstarch. Am J Physiol 257: H238–H243

    CAS  PubMed  Google Scholar 

  46. Schimetta W, Schöchl H, Kröll W, Pölz W, Pölz G, Mauritz W (2001) Safety of hypertonic hyperoncotic solutions—A survey from Austria. Wien Klin Wochenschr 114: 89–95

    Google Scholar 

  47. Soliman MH, Ragab H, Waxman K (1990) Survival after hypertonic saline resuscitation from hemorrhage. Am Surg 56: 749–751

    CAS  PubMed  Google Scholar 

  48. Solomonov E, Hirsh M, Yahiya A, Krausz M (2000) The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med 28: 749–754

    Article  CAS  PubMed  Google Scholar 

  49. Sprung CL, Bernard GR, Dellinger RP (2001) Guidelines for the management of severe sepsis and septic shock. Intensive Care Med 27 (Suppl): 1–134

    Article  Google Scholar 

  50. Stadlbauer KH, Wagner-Berger HG, Raedler C et al. (2003) Vasopressin, but not fluid resuscitaton, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology 98: 699–704

    Article  CAS  PubMed  Google Scholar 

  51. Sun Q, Dimopoulos G, Nguyen DN et al. (2003) Low-dose vasopressin in the treatment of septic shock in sheep. Am J Respir Crit Care Med 168: 481–486

    Article  PubMed  Google Scholar 

  52. Tisherman S (2000) Regardless of origin, uncontrolled hemorrhage is uncontrolled hemorrhage. Crit Care Med 28: 892–894

    Article  CAS  PubMed  Google Scholar 

  53. Traverso LW, Bellamy RF, Hollenbach SJ, Witcher LD (1987) Hypertonic sodium chloride solutions: effects on hemodynamics and survival after hemorrhage in swine. J Trauma 27: 32–35

    CAS  PubMed  Google Scholar 

  54. Trunkey DD (1983) Trauma. Sci Am 249: 20–27

    Google Scholar 

  55. Tsuneyohsi I, Kanmura Y, Yoshimura N (1996) Nitric oxide as a mediator of reduced arterial responsiveness in septic patients. Crit Care Med 24: 1083–1086

    CAS  PubMed  Google Scholar 

  56. Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA (2001) Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med 29: 487–493

    CAS  PubMed  Google Scholar 

  57. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW (1991) 7.5% sodium chloride/dextran for resuscitation of patients undergoing helicopter transport. Arch Surg 126: 1065–1072

    CAS  PubMed  Google Scholar 

  58. Vassar MJ, Perry CA Holcroft JW (1990) Analysis of potential risks associated with 7,5% sodium chloride resuscitation of traumatic shock. Arch Surg 135: 1309–1315

    Google Scholar 

  59. Velasco IT, Pontierie V, Rocha e Silva M, Lopes OU (1980) Hyperosmotic NaCl and severe hemorrhagic shock. Am J Phyiol 239: H664-H673

    CAS  Google Scholar 

  60. Voelckel WG, Raedler C, Wenzel V et al. (2003) Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med 31: 1160–1165

    Article  CAS  PubMed  Google Scholar 

  61. Welte M, Messmer K (1996) Cardiac function in small volume resuscitation. In: Messmer K (ed) Compromised perfusion. Progr Appl Microcirc 21: 1–19

    Google Scholar 

  62. Wenzel V, Lindner KH (2001) Employing vasopressin during cardiopulmonary resuscitation and vasodilatory shock as a lifesaving vasopressor. Cardiovasc Res 51: 529–541

    Article  CAS  PubMed  Google Scholar 

  63. Wildenthal K, Mierzwiak DS, Mitchell JH (1969) Acute effects of increased serum osmolality on left ventricular performance. Am J Physiol 216: 890–904

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Burgard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier-Hellman, A., Burgard, G. Neue Therapieansätze bei der prähospitalen und hospitalen Schockbehandlung. Internist 45, 305–314 (2004). https://doi.org/10.1007/s00108-003-1141-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-003-1141-z

Schlüsselwörter

Keywords

Navigation