Skip to main content
Log in

Impact of coppice and high stem management on Eucalyptus wood quality

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Coppicing, a well-studied forestry management system, offers significant productivity and economic benefits to plantations. This study aimed to assess the growth and wood quality differences in ten Eucalyptus genotypes, for example, E. grandis x E. urophylla (G3, G4, G5, G6, G8, G10, and G13), E. urophylla (G12), E. saligna (G14), and E. grandis x E. camaldulensis (G16) at three years old under high stem and coppice regimes, considering stem quantity variations. Six trees per clone were sampled in both regimes, with coppice trees having either one or two stems. Various wood and bark properties, including basic density, biomass estimation, pith eccentricity, and heartwood percentage were evaluated. Clone G12 showed the highest increment average volume among the treatments, while clones G14 and G16 had the lowest performances across all management regimes. Under high stem and coppice management, the clones show basic wood density ranging from 485 to 393 kg m-3 and 482 to 405 kg m-3, respectively. Generally, trees grown under the coppice regime produced more heartwood. Under the two-stem coppice regime, 90% of the clones showed greater pith eccentricity in their basal discs. Pith eccentricity varied significantly among clones, with coppice (especially with two stems) showing greater eccentricity compared to high stem management. Overall, wood properties did not significantly differ between high stem and coppice management for the evaluated Eucalyptus clones at three years old, except for pith eccentricity, which favored coppice with two stems. This study highlights the potential benefits of coppicing for specific wood quality traits in Eucalyptus plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Almeida MNF, Vidaurre GB, Pezzopane JEM et al (2020) Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. For Ecol Manag 458:117743. https://doi.org/10.1016/j.foreco.2019.117743

    Article  Google Scholar 

  • Almeida MNF, de Toledo Picoli EA, Moulin JC et al (2022) Wood properties as potential biomarkers of tolerance to physiological disorders: comparison of divergent eucalyptus genotypes. Scientia Forestalis 50:1–14. https://doi.org/10.18671/scifor.v50.22

    Article  Google Scholar 

  • Almeida MNF, Vidaurre GB, Louzada JLPC et al (2023) Wood density variations of E. urophylla clone among growth sites are related to climate. Can J for Res 53(5):343–353. https://doi.org/10.1139/cjfr-2022-003

    Article  CAS  Google Scholar 

  • Alves ICN, Gomide JL, Colodette JL et al (2011) Technological characterization of Eucalyptus Benthamii wood for kraft cellulose production. Ciência Florestal 21:167–174. https://doi.org/10.5902/198050982759

    Article  Google Scholar 

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT (2003) NBR 11941: wood - determination of basic density. Rio de Janeiro

  • Barros KLC, Macedo RLG, Venturin N (2017) Capacidade De brotação de teca sob regime de Talhadia composta. (Teak Stump Sprouting Capacity Under Compound Coppice Regime). ProcessFloresta E Ambiente 24:e00134315. https://doi.org/10.1590/2179-8087.134315

    Article  Google Scholar 

  • Brito AS, Vidaurre GB, Oliveira JTS et al (2019) Effect of planting spacing in production and permeability of heartwood and sapwood of Eucalyptus wood. Floresta Ambiente 26:e20180378. https://doi.org/10.1590/2179-8087.037818

    Article  Google Scholar 

  • Castro AFNM, Castro RVO, Carneiro ADCO et al (2016) Correlations between age, wood quality and charcoal quality of Eucalyptus clones. Revista Árvore 40:551–560. https://doi.org/10.1590/0100-67622016000300019

    Article  CAS  Google Scholar 

  • Cherelli SG, Sartori MMP, Próspero AG, Ballarin AW (2018) Heartwood and sapwood in Eucalyptus trees: nonconventional approach to wood quality. Acad Bras Ciênc 90:425–438. https://doi.org/10.1590/0001-3765201820160195

    Article  CAS  Google Scholar 

  • Dou J, Niemelä K, Haatainen T, Tervola P, Vehmaa J (2023) Investigation of pitch deposits throughout the fiber line of softwood pulp mill. J Clean Prod 405:136940. https://doi.org/10.1016/j.jclepro.2023.136940

    Article  CAS  Google Scholar 

  • Eloy E, Silva DAD, Caron BO, Elli EF, Schwerz F (2018) Effect of age and spacing on biomass production in forest plantations. Revista Árvore 42(2). https://doi.org/10.1590/1806-90882018000200014

  • Fontenele NM (2016) Comparison between productivity and economic analysis of Eucalyptus spp. clones in high-stem and coppice systems in the Araripe plaster complex – PE. Dissertation, Universidade Federal Rural de Pernambuco

  • Gomide JL, Colodette JL, Oliveira RCD, Silva CM (2005) Technological characterization, for cellulose production, of the new generation of Eucalyptus clones from Brazil. Revista Árvore 29:129–137. https://doi.org/10.1590/S0100-67622005000100014

    Article  Google Scholar 

  • Gominho J, Pereira H (2005) The influence of tree spacing in heartwood content in Eucalyptus globulus Labill. Wood Fiber Sci 37:582–590

    CAS  Google Scholar 

  • Gonçalves FG, Oliveira JTDS, Lucia RMD, Sartório RC (2009) Study of some mechanical properties of wood from a clonal hybrid of Eucalyptus urophylla x Eucalyptus Grandis. Revista Árvore 33:501–509. https://doi.org/10.1590/S0100-67622009000300012

    Article  Google Scholar 

  • Gonçalves JLM, Alvares CA, Higa AR et al (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27. https://doi.org/10.1016/j.foreco.2012.12.030

    Article  Google Scholar 

  • Gonçalves JLM, Alvares CA, Behling M et al (2014) Produtividade De plantações de eucalipto manejadas nos sistemas de alto fuste e talhadia, em função de fatores edafoclimáticos. (Productivity of eucalypt plantations managed under high forest and coppice systems, depending on edaphoclimatic factors). Scientia Forestalis 42(103):411–419

    Google Scholar 

  • Gonçalves JLM, Alvares CA, Rocha JH, Brandani CB, Hakamada R (2017) Eucalypt plantation management in regions with water stress. South Forests: J for Sci 79(3):169–183. https://doi.org/10.2989/20702620.2016.1255415

    Article  Google Scholar 

  • Hakamada RE, Lemos CCZD, Batistuzzo GZB et al (2015) Use of the forest inventory to identify silvicultural and environmental factors that affect the productivity of Eucalyptus managed under coppice. Série Técnica IPEF 21(42):58–64

    Google Scholar 

  • Hakamada RE, Moreira GG, Fernandes PG, Martins SDS (2022) Legacy of harvesting methods on coppice-rotation Eucalyptus at experimental and operational scales. Trees Forests People 9:100293. https://doi.org/10.1016/j.tfp.2022.100293

    Article  Google Scholar 

  • Hardiyanto EB, Inail MA, Mendham DS, Thaher E, Sitorus BK (2022) Eucalyptus pellita coppice vs. seedlings as a re-establishment method in South Sumatra. Indonesia Forests 13(7):1017. https://doi.org/10.3390/f13071017

    Article  Google Scholar 

  • Harwood C (2011) New introduction doing it right. In: Walter J (ed) Developing a eucalypt resource: learning from Australia and elsewhere. Wood Technology Research Centre, ChristChurch, New Zealand, pp 43–54

    Google Scholar 

  • IBÁ (2023) Instituto Brasileiro De Árvores - Report IBÁ 2023. Indústria Brasileira de Árvores, São Paulo

    Google Scholar 

  • Lima IL, Garcia JN, Stape JL (2007) Influence of thinning and fertilization on pith displacement and log end cracks in Eucalyptus grandis Hill Ex-maiden. Cerne 13(2):170–177

    Google Scholar 

  • Melo AB (2022) Productivity and quality of wood from Corymbia and Eucalyptus species in two sites in Brazil. Dissertation, Universidade Federal do Espírito Santo

  • Nabais C, Hansen JK, David-Schwartz R, Klisz M, López R, Rozenberg P (2018) The effect of climate on wood density: what provenance trials tell us? For Ecol Manag 408:148–156. https://doi.org/10.1016/j.foreco.2017.10.040

    Article  Google Scholar 

  • Nicolescu VN, Carvalho J, Hochbichler E, Bruckman V, Piqué-Nicolau M, Hernea C, Viana H, Štochlová P, Ertekin M, Tijardovic M, Dubravac T, Vandekerkhove K, Kofman PD, Rossney D, Unrau A (2017) Silvicultural guidelines for European coppice forests. COST action FP1301 reports. Albert Ludwig University of Freiburg, Freiburg, Germany. https://doi.org/10.13140/RG.2.2.12193.10081

    Book  Google Scholar 

  • Pavan BE, Amaral RG, Pupin S et al (2021) Competitive ability among Eucalyptus spp. commercial clones in Mato Grosso do sul state. For Ecol Manag 494:119297. https://doi.org/10.1016/j.foreco.2021.119297

    Article  Google Scholar 

  • .Pfautsch S, Harbusch M, Wesolowski A et al (2016) Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19:240–248. https://doi.org/10.1111/ele.12559

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523. https://doi.org/10.1104/pp.010816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poersch NL, França Filho LRT, Miguel EP, Cruz GHM, Francisquette KL, Cavalheiro SB (2017) Influence of climate variables in the initial growth of Corymbia citriodora and different species of eucalyptus. Bioscience J 33(6):1452–1464

    Article  Google Scholar 

  • R CORE TEAM (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ramalho FMG, Pimenta EM, Goulart CP et al (2019) Effect of stand density on longitudinal variation of wood and bark growth in fast-growing Eucalyptus plantations. iForest-Biogeosciences Forestry 12(6):527–532. https://doi.org/10.3832/ifor3082-012

    Article  Google Scholar 

  • Reis GG, Reis MDGF (1997) Fisiologia Da brotação de eucalipto com ênfase nas suas relações hídricas. (hysiology of eucalyptus sprouting with emphasis on water relations) Série técnica IPEF 11(30):9–22

    Google Scholar 

  • Ritter M (2014) Field guide to the cultivated eucalypts (Myrtaceae) and how to identify them. Annual Missouri Botanic Garden 99(4):642–687. https://doi.org/10.3417/2012039

    Article  Google Scholar 

  • Rocha SM (2022) Wood quality of hybrid clones of Corymbia torelliana and Corymbia citriodora for steelmaking charcoal production. Thesis, Universidade Federal do Espírito Santo

  • Rocha MFV, Vital BR, De Carneiro ACO et al (2016) Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J Trop for Sci 28(3):243–248

    Google Scholar 

  • Rocha MFV, Pereira BLC, Oliveira AC et al (2018) Influence of plant spacing on the bark properties of a Eucalyptus clone. Revista Árvore 42(5):e420501. https://doi.org/10.1590/1806-90882018000500001

    Article  Google Scholar 

  • Rocha JHT, Wenzel AV, Melo EA et al (2019) Responses of coppiced Eucalyptus to macro-and micronutrient application. New Forest 50:717–731. https://doi.org/10.1007/s11056-018-09695-5

    Article  Google Scholar 

  • Rocha SMG, Vidaurre GB, Pezzopane JEM et al (2020) Influence of climatic variations on production, biomass and density of wood in Eucalyptus clones of different species. For Ecol Manag 473:118290. https://doi.org/10.1016/j.foreco.2020.118290

    Article  Google Scholar 

  • Santos LMH, Almeida MNFD, Silva JGMD et al (2021) Variations in heartwood formation and wood density as a function of age and plant spacing in a fast-growing Eucalyptus plantation. Holzforschung 75(11):979–988. https://doi.org/10.1515/hf-2020-0215

    Article  CAS  Google Scholar 

  • Silva DA, Trugilho PF (2003) Dimensional behavior of the wood of sapwood and heartwood for analysis of image submitted in different temperatures. Cerne 9(1):056–065

    Google Scholar 

  • Silva CL, Roldão BDC, Santos LDT, Hein PRG (2017) Eucalyptus and Acacia wood and bark in monospecific and intercropped plantations. Floresta E Ambiente 25(1):1–8. https://doi.org/10.1590/2179-8087.081914

    Article  Google Scholar 

  • Silva NFD, Barros NFD, Neves JCL, Schulthais F, Novais RFD, Mattiello EM (2020) Yield and nutrient demand and efficiency of eucalyptus under coppicing regime. Forests 11(8):852. https://doi.org/10.3390/f11080852

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. United States Department of Agriculture, Natural Resources Conservation Service, Agriculture Handbook Number 436. Washington, DC, pp 886

  • Thomas DS, Montagu KD, Conroy JP (2007) Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings. Tree Physiol 27:251–260. https://doi.org/10.1093/treephys/27.2.251

    Article  CAS  PubMed  Google Scholar 

  • Tomazello M, Brazolin S, Chagas MP et al (2008) Application of X-ray technique in nondestructive evaluation of eucalypt wood. Maderas Cienc Tecnol 10:139–149. https://doi.org/10.4067/S0718-221X2008000200006

    Article  Google Scholar 

  • Valle MLA, Silva JDC, Lucia RMD, Evangelista WV (2013) Retention and penetration of CCA in first and second rotation of Eucalyptus urophylla ST Blake wood. Ciência Florestal 23:481–490. https://doi.org/10.5902/198050989292

    Article  Google Scholar 

  • Vidaurre GB, Silva JGM, Moulin JC, Carneiro ACO (2020) Qualidade Da Madeira De eucalipto proveniente de plantações no Brasil. (Quality of eucalyptus wood from plantations in Brazil). EdUfes, Vitória

    Google Scholar 

  • Visser H, van der Maaten-Theunissen M, van der Maaten E (2023) BAI BAI bias–An evaluation of uncertainties in calculating basal area increments from cores. Dendrochronologia 78:126066. https://doi.org/10.1016/j.dendro.2023.126066

    Article  Google Scholar 

  • Vital BR (1984) Methods for determining wood density. Viçosa MG: SIF, 501

Download references

Acknowledgements

The authors are grateful to Wood Quality Research Center (NUQMAD) at the Federal University of Espírito Santo, in Brazil, to the EUCFLUX Cooperative Program of the Institute for Forestry Research and Studies – IPEF, to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001, and to Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) for the financial assistance, which allowed us to conduct this research.

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001, and by Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES).

Author information

Authors and Affiliations

Authors

Contributions

Nauan Ribeiro Marques Cirilo: Conceptualization, Data curation, Formal analysis, Methodology, Writing - Original Draft, Writing - Review & Editing; Maria Naruna Félix de Almeida: Formal analysis, Methodology, Supervision, Writing - Review & Editing; Vaniele Bento dos Santos: Data curation, Methodology; Aguinaldo Jose de Souza: Validation; Gustavo Jaske da Conceição: Data curation; João Gabriel Missia da Silva: Methodology, Supervision; Luana Bento Protázio: Formal analysis; Bruno Sangali Arantes: Formal analysis; Otavio Camargo Campoe: Conceptualization; Rodrigo Eiji Hakamada: Supervision; Pedro Nicó de Medeiros Neto: Supervision; Thayanne Caroline Castor Neto: Writing - Review & Editing; Joannès Guillemot: Conceptualization; Graziela Baptista Vidaurre: Conceptualization, Supervision, Writing - Review & Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nauan Ribeiro Marques Cirilo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirilo, N.R.M., de Almeida, M.N.F., dos Santos, V.B. et al. Impact of coppice and high stem management on Eucalyptus wood quality. Eur. J. Wood Prod. (2024). https://doi.org/10.1007/s00107-024-02125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00107-024-02125-8

Navigation