Effect of chemical and thermal modification, and material replacement on strand board properties

Abstract

The purpose of this paper was to analyze the effects of various OSB-strand modifications on physical and mechanical properties of strand board. Norway spruce (Picea abies L. Karst) strands were acetylated using acetic anhydride or thermally modified at 180 °C using atmospheric pressure and superheated steam environment. Strand boards made of acetylated strands (Acet), thermally modified strands (TM) and thermally modified strands used only at surface layers (TMSL) were produced. Furthermore, strand boards with 20% (Cork20%) and 40% (Cork40%) cork particles were manufactured. Wood-water relations, i.e., equilibrium moisture content (EMC), water absorption (WA), thickness swelling (TS), as well as mechanical properties, i.e., bending strength and internal bonding, were tested and compared to untreated reference strand board. The EMC for TMSL was no different than the reference boards, however, the other boards had a statistically significant decrease in EMC. Acetylated strand board and boards with cork particles had a significant increase in water resistance. The mechanical properties decreased for TM and Cork40%, but no difference was shown for Cork20%. Acetylation increased internal bond strength. The results provide a comparison between different modifications of strand boards and show a new possibility of reducing the water effects on OSB with cork particles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdolzadeh H, Doosthoseini K, Karimi AN, Enayati AA (2011) The effect of acetylated particle distribution and type of resin on physical and mechanical properties of poplar particleboard. Eur J Wood Prod 69(1):3–10. https://doi.org/10.1007/s00107-009-0390-5

    CAS  Article  Google Scholar 

  2. Absolute Reports (2019) Global Oriented Strand Board (OSB) Market 2019 by Manufacturers, Regions, Type and Application, Forecast to 2024. [Online]. https://www.theexpresswire.com/pressrelease/Oriented-Strand-Board-OSB-Market-2019-Explosive-Factors-of-Revenue-by-Key-Vendors-Size-Demand-Development-Strategy-Future-Trends-and-Industry-Growth-Research-Report_10220806. Accessed 13 Mar 2020

  3. Andrade PI, de Oliveira AS, Neiva DM, Vital BR, Carneiro ADCO, Gominho J, Pereira H (2016) Strength properties and dimensional stability of particleboards with different proportions of thermally treated recycled pine particles. Holzforschung 70(5):467–474

    CAS  Article  Google Scholar 

  4. Bao S, Daunch WA, Sun Y, Rinaldi PL, Marcinko JJ, Phanopoulos C (2003) Solid state two-dimensional NMR studies of polymeric diphenyl-methane diisocyanate (PMDI) reaction in wood. For Prod J 53(6):63–71

    CAS  Google Scholar 

  5. Bodîrlău R, Teacă CA, Spiridon I (2009) Preparation and characterization of composites comprising modified hardwood and wood polymers/poly (vinyl chloride). BioResources 4(4):1285–1304

    Google Scholar 

  6. Bongers HPM, Beckers EPJ (2003) Mechanical properties of acetylated solid wood treated on pilot plant scale. In: Van Acker J, Hill C (eds) Proceedings of the first European conference on wood modification, Ghent, Belgium, pp 341–350

  7. Boonstra M, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh- Werkst 64(3):204–211. https://doi.org/10.1007/s00107-005-0078-4

    CAS  Article  Google Scholar 

  8. Candelier K, Thevenon MF, Petrissans A, Dumarcay S, Gerardin P, Petrissans M (2016) Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci 73(3):571–583

    Article  Google Scholar 

  9. Carmo Lança M, Neagu ER, Silva PC, Gil L, Marat-Mendes JN (2006) Study of electrical properties of natural cork and two derivative products. Mater Sci Forum 514:940–944

    Article  Google Scholar 

  10. Čermák P, Rautkari L, Horáček P, Saake B, Rademacher P, Sablík P (2015) Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10(2):3242–3253. https://doi.org/10.15376/biores.10.2.3242-3253

    Article  Google Scholar 

  11. Cetera P, Negro F, Cremonini C, Todaro L, Zanuttini R (2018) Physico-mechanical properties of thermally treated poplar OSB. Forests 9(6):345

    Article  Google Scholar 

  12. Direske M, Bonigut J, Wenderdel C, Scheiding W, Krug D (2018) Effects of MDI content on properties of thermally treated oriented strand board (OSB). Eur J Wood Prod 76(3):823–831

    CAS  Article  Google Scholar 

  13. Dömény J, Čermák P, Pařil P, Pozsgayné FF, Dejmal A, Rademacher P (2015) Application of microwave heating for acetylation of beech (Fagus sylvatica L.) and poplar (Populus hybrids) wood. BioResources 10(4):8181–8193

    Article  Google Scholar 

  14. Dreher WA, Goldstein IS, Cramer GR (1964) Mechanical properties of acetylated wood. For Prod J 14(2):66–68

    Google Scholar 

  15. EN 13183-1 (2002) Moisture content of a piece of sawn timber—part 1: determination by oven dry method. European Committee for Standardization, Brussels

    Google Scholar 

  16. Esteves B, Pereira H (2008) Wood modification by heat treatment: a review. BioResources 4(1):370–404

    Google Scholar 

  17. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin. https://doi.org/10.1515/9783110839654

    Google Scholar 

  18. Frihart C, Brandon R, Beecher J, Ibach R (2017) Adhesives for achieving durable bonds with acetylated wood. Polymers 9(12):731. https://doi.org/10.3390/polym9120731

    CAS  Article  PubMed Central  Google Scholar 

  19. Gil L (2009) Cork composites: a review. Materials 2:776–789

    CAS  Article  Google Scholar 

  20. Gil L, Moiteiro C (2003) Ullmann’s encyclopedia of chemical technology. Cork Verlag, Germany

    Google Scholar 

  21. Gil L, Silva P (2004) New multifunctional composites of Cork/TetraPak® residues. Materials Congress, London

    Google Scholar 

  22. Goroyias GJ, Hale MD (2002). Heat treatment of wood strands for OSB production: effect on the mechanical properties, water absorption and dimensional stability. In: 33rd annual meeting of the international research group on wood preservation in Cardiff, Wales

  23. Hill C (2006) Wood modification: chemical, thermal and other processes, Wiley Series in: Renewable Resources. Wiley, Hoboken. https://doi.org/10.1002/0470021748

  24. Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50(5):457–462

    CAS  Article  Google Scholar 

  25. Homan WJ, Jorissen AJM (2004) Wood modification developments. Heron 49(4):361–386

    Google Scholar 

  26. Homan WJ, Tjeerdsma B, Beckers E, Jorissen AJ (2000). Structural and other properties of modified wood. In: Proceedings of the world conference on timber engineering, University of British Columbia, Vancouver

  27. Imamura Y, Subiyanto B, Rowell RM, Nilsson T (1989) Dimensional stability and biological resistance of particleboard from acetylated Albizzia wood particles. Wood Res 76:49–58

    CAS  Google Scholar 

  28. Kelly MW (1977) Critical literature review of relationships between processing parameters and physical properties of particleboard. Gen. Tech. Rep. FPL-10. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, p 10

  29. Klímek P, Morávek T, Ráhel J, Stupavská M, Děcký D, Král P, Kúdela J, Wimmer R (2016) Utilization of air-plasma treated waste polyethylene terephthalate particles as a raw material for particleboard production. Compos B Eng 90:188–194

    Article  Google Scholar 

  30. Kollmann F (1951) Technologie des Holzes und Holzwerkstoffe (Technology of wood and wood-based products) (In German). Springer, New York, p 1050. https://doi.org/10.1007/978-3-642-52947-4

  31. Kollmann F, Fengel D (1965) Changes in the chemical composition of wood by thermal treatment. Holz Roh- Werkst 23:461–468

    CAS  Article  Google Scholar 

  32. Koppers DL (1961) Dimensionally stabilized wood. New Materials Technical Information No. (RDW-400) E-106

  33. Larsson P, Simonson R (1994) A study of strength, hardness and deformation of acetylated Scandinavian softwoods. Holz Roh- Werkst 52(2):83–86. https://doi.org/10.1007/bf02615470

    CAS  Article  Google Scholar 

  34. Mendes RF, Júnior GB, de Almeida NF, Surdi PG, Barbeiro IN (2013) Effect of thermal treatment on properties of OSB panels. Wood Sci Technol 47(2):243–256

    CAS  Article  Google Scholar 

  35. Militz H (1991) The improvement of dimensional stability and durability of wood through treatment with non-catalysed acetic acid anhydride. Holz Roh- Werkst 49(4):147–152

    CAS  Article  Google Scholar 

  36. Militz H (2002) Heat treatment technologies in Europe: scientific background and technological state of art. In: Proceedings of conference on enhancing the durability of lumber and engineered wood products, Forest Products Society, Madison

  37. Mohebby B, Ilbeighi F, Kazemi-Najafi S (2008) Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF). Holz Roh- Werkst 66(3):213–218

    CAS  Article  Google Scholar 

  38. Okino EY, Teixeira DE, Del Menezzi CH (2007) Post-thermal treatment of oriented strandboard (OSB) made from cypress (Cupressus glauca Lam). Maderas. Ciencia y tecnología 9(3):199–210

    Google Scholar 

  39. Otlesnov Y, Nikitina N (1977) Trial operation of a commercial installation for modification of wood by acetylation. Latvijas Lauksaimniecibas Akademijas Raksi 130:50–53

    CAS  Google Scholar 

  40. Papadopoulos NA (1999) The effect of selected process variables on the mechanical properties and dimensional stability of particleboards. MS thesis, University of Wales, Cardiff, UK

  41. Papadopoulos AN, Traboulay E (2002) Dimensional stability of OSB made from acetylated fir strands. Holz Roh- Werkst 60(2):84–87

    CAS  Article  Google Scholar 

  42. Papadopoulos AN, Ntalos GA, Soutsas K, Tantos V (2006) Bonding behaviour of chemically modified wood particles for board production. Holz Roh- Werkst 64(1):21–23

    CAS  Article  Google Scholar 

  43. Paul W, Ohlmeyer M (2005). Optimisation of wood based panel properties by heat pre-treatment. In: Proceedings of the ninth European panel product symposium, October 5–7 2005, Llandudno, UK

  44. Paul W, Ohlmeyer M, Leithoff H, Boonstra MJ, Pizzi A (2006) Optimising the properties of OSB by a one-step heat pre-treatment process. Holz Roh- Werkst 64(3):227–234

    CAS  Article  Google Scholar 

  45. Paul W, Ohlmeyer M, Leithoff H (2007) Thermal modification of OSB-strands by a one-step heat pre-treatment–Influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz Roh- Werkst 65(1):57

    CAS  Article  Google Scholar 

  46. Pétrissans M, Gérardin P, Serraj M (2003) Wettability of heat-treated wood. Holzforschung 57(3):301–307

    Article  Google Scholar 

  47. Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New York

    Google Scholar 

  48. Popescu CM, Hill CAS, Curling SF, Ormondroyd G, Xie Y (2013) The water vapour sorption behaviour of acetylated birch wood—how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49(5):2362–2371. https://doi.org/10.1007/s10853-013-7937-x

    CAS  Article  Google Scholar 

  49. Pries M, Wagner R, Kaesler KH, Militz H, Mai C (2013) Acetylation of wood in combination with polysiloxanes to improve water-related and mechanical properties of wood. Wood Sci Technol 47(4):685–699. https://doi.org/10.1007/s00226-013-0535-x

    CAS  Article  Google Scholar 

  50. Rosa ME, Fortes MA (2007) Water absorption by cork. Wood Fiber Sci 25(4):339–348

    Google Scholar 

  51. Rowell RM (1983) Chemical modification of wood. For Prod 6:363–382

    Google Scholar 

  52. Sandermann W, Augustin H (1963a) Chemical investigations on the thermal decomposition of wood, part I: state of research. Holz Roh- Werkst 21:256–265

    CAS  Article  Google Scholar 

  53. Sandermann W, Augustin H (1963b) Chemical investigations on the thermal decomposition of wood, Part II: investigations by means of the differential thermal analysis. Holz Roh- Werkst 21:305–315

    CAS  Article  Google Scholar 

  54. Sandermann W, Augustin H (1964) Chemical investigations on the thermal decomposition of wood, part III: chemical investigation on the course of decomposition. Holz Roh- Werkst 22:377–385

    CAS  Article  Google Scholar 

  55. Šernek M, Kamke FA, Glasser WG (2004) Comparative analysis of inactivated wood surfaces. Holzforschung 58(1):22–31

    Article  Google Scholar 

  56. Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654

    CAS  Article  Google Scholar 

  57. Skaar C (1988) Wood–water relations. Springer, New York. https://doi.org/10.1007/978-3-642-73683-4_4

    Google Scholar 

  58. Tarkow H, Stamm AJ, Erickson ECO (1950) Acetylated wood. USDA Forest Service Report No. 1593, Forest Products Laboratory, Madison, Wisconsin, USA

  59. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149

    CAS  Article  Google Scholar 

  60. Youngquist JA, Rowell RM, Krzysik A (1986) Mechanical properties and dimensional stability of acetylated aspen flakeboard. Holz Roh- Werkst 44(12):453–457

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomáš Pipíška.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pipíška, T., Pařil, P., Čermák, P. et al. Effect of chemical and thermal modification, and material replacement on strand board properties. Eur. J. Wood Prod. 78, 565–575 (2020). https://doi.org/10.1007/s00107-020-01527-8

Download citation