Skip to main content

Advertisement

Log in

How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The use of natural resources for the production of nanostructured cellulosic films of high quality could reduce pollution and raw material costs for cellulose industry. This work provides innovative information about the use of Amazonian species not explored in studies involving the production of nanostructured films, as well as the evaluation of important characteristics that may be decisive for the destination of the product. The aim of this study was to modify Schizolobium parahyba var. amazonicum (paricá) waste fibers through alkaline (NaOH) and bleaching (NaClO2) treatments for cellulose nanofibrils (CNFs) production and evaluate the characteristics of the nanofibrils and the surface as well as the mechanical resistance of the films obtained. The alkaline treatment was carried out with sodium hydroxide (5% NaOH solution (w/v); 2 h), while the bleaching was performed using sodium chlorite and glacial acetic acid (1.5 g NaClO2; 10 drops of glacial acetic acid; 1 h). The treatments were performed in sequence, producing nanofibrils after alkaline treatment and after bleaching. Lignin content did not change with the alkaline treatment, but it significantly decreased with bleaching (from 26.1 to 6.8%). Hemicelluloses content decreased with the sequence of treatments. FTIR results showed that the mechanical defibrillation caused disruption of the fiber bonds. The temperature of thermal degradation observed in DTG analysis increased from the natural fibers (243 °C) to alkaline + bleached fibers (255 °C). The defibrillation process led to higher thermal stability of the alkaline + bleached nanofibrils in comparison to fibers. Moreover, films were prepared from the obtained CNFs and evaluated by the mechanical properties and surface contact angle. The mechanical properties showed values of 6.93 ± 0.18 GPa for modulus of elasticity (MOE) for the films produced from material which was submitted to the bleaching treatment. The results highlighted a more hydrophobic surface of the film produced with the CNFs generated from the bleached fibers. The results of mechanical properties showed the superiority of the films produced from the alkaline + bleached fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with an uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • ABNT (2003) NBR 13999: paper, board, pulps and wood—determination of residue (ash) on ignition at 525 °C. ABNT, Brazilian Association of Technical Standards, Rio de Janeiro

  • ABNT (2010a) NBR 7989: pulp and wood—determination of acid-insoluble lignin. ABNT, Brazilian Association of Technical Standards, Rio de Janeiro

  • ABNT (2010b) NBR 14853: determination of soluble matter in ethanol-toluene and in dichloromethane and in acetone. ABNT, Brazilian Association of Technical Standards, Rio de Janeiro

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Agarwal UP, Zhu JY, Ralph SA (2013) Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification. Holzforschung 67:371–377

    CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Almeida DH, Scaliante RM, Macedo LB, Macêdo AN, Dias AA, Christoforo AL, Junior CC (2013) Structural characterization of the Amazonian wood specie paricá (Schizolobium amazonicum Herb) in members. Rev Árvore 37:1175–1181

    Article  Google Scholar 

  • ASTM D828-16 (2016) Standard Test method for tensile properties of paper and paperboard using constant-rate-of-elongation apparatus. In: ASTM, American Society for Testing and Materials, West Conshohocken

  • Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr Polym 88:1258–1263

    Article  CAS  Google Scholar 

  • Bartz J, Madruga KM, Klein B, Pinto VZ, Dias ARG (2012) Pasting properties of native and acetylated rice starches. Braz J Food Technol 15:78–83

    Article  Google Scholar 

  • Bertoti AR, Luporini S, Esperidião MCA (2009) Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydr Polym 77:20–24

    Article  CAS  Google Scholar 

  • Bonelli CMC, Elzubair A, Suarez JCM, Mano EB (2005) Thermal, mechanical and morphological behavior of recycled high-density polyethylene reinforced with piassava fiber. Polimeros 15:256–260

    CAS  Google Scholar 

  • Bouiri B, Amrani M (2010) Elemental chlorine-free bleaching halfa pulp. J Ind Eng Chem 16:587–592

    Article  CAS  Google Scholar 

  • Browning BL (1963) The chemistry of wood. Interscience, Warrenvile, p 689

    Google Scholar 

  • Bufalino L, Sena Neto AR, Tonoli GHD et al (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672

    Article  CAS  Google Scholar 

  • Burhenne L, Messmer J, Aicher T, Laborie MP (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrol 101:177–184

    Article  CAS  Google Scholar 

  • Carvalho PER (2007) Paricá Schizolobium amazonicum. Technical Note 142, Colombo, Paraná. EMBRAPA Florestas, p 8

  • Chaker A, Sabrine A, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875

    Article  CAS  Google Scholar 

  • Chen C, Baucher M, Christensen JH, Boerjan W (2001) Biotechnology in trees: towards improved paper pulping in lignin engineering. Euphytica 118:185–195

    Article  CAS  Google Scholar 

  • Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crop Prod 59:27–34

    Article  CAS  Google Scholar 

  • Correa AC (2010) Preparation of cellulose nanofibers from curaua fibers for the development of polymeric nanocomposites with EVA. Thesis, Federal University of São Carlos

    Article  Google Scholar 

  • Correia VC, Santos V, Sain M, Santos SF, Leão AL, Savastano Junior H (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23:2971–2987

    Article  CAS  Google Scholar 

  • Douglas RS, Hasan J, Hou-min C, John FK (2006) Inorganic reactions in chlorine dioxide bleaching of softwood kraft pulp. J Wood Chem Technol 26:201–213

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Arangurem M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nagakaito AN, Mangalam A, Simonsem J, Benight AS, Bismarck A, Berglund LA, Peijis T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Featherstone A, Viney D, Mosbye J, Richardson DE (2006) Deposit control: does adsorption of colloidal extractives to bentonite affect the dissolution of resin acids? In: 60th Appita Annual Conference, Melbourne Australia, pp 417–420

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodriguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    Article  CAS  Google Scholar 

  • Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol 62:331–349

    Article  CAS  Google Scholar 

  • Fonseca CS, Silva TF, Silva MF, Oliveira IRC, Mendes RF, Hein PRG, Mendes LM, Tonoli GHD (2016) Eucalyptus cellulose micro/nanofibers in extruded fiber-cement composites. Cerne 22:1–9

    Article  Google Scholar 

  • Fortunati F, Luzia F, Jiménezb A et al (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368

    Article  CAS  Google Scholar 

  • Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661

    Article  CAS  Google Scholar 

  • Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275

    Article  CAS  Google Scholar 

  • Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci technol 59:1303–1039

    Article  CAS  Google Scholar 

  • Guimarães Júnior M, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83

    Article  Google Scholar 

  • Hamzeh Y, Ashori A, Khorasani Z, Abdulkhani A, Abyaz A (2013) Pre-extraction of hemicelluloses from bagasse fibers: effects of dry-strength additives on paper properties. Ind Crop Prod 43:365–371

    Article  CAS  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: Process optimization and properties. Wood Sci Technol 46:193–205

    Article  CAS  Google Scholar 

  • Holmbom B (2000) Resin reactions and deresination in bleaching. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI Press, Atlanta, pp 231–244

    Google Scholar 

  • Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. Part II. Analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  • Huang Y-F, Chiueh P-T, Lo S-L (2016) A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Env Res 26:103–109

    Article  CAS  Google Scholar 

  • Hubbell CA, Ragauskas AJ (2010) Effect of acid–chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101:7410–7415

    Article  CAS  Google Scholar 

  • Ichazo MN, Albano C, González J, Pereira R, Candal MV (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214

    Article  Google Scholar 

  • Ioelovich M (2008) Cellulose as nanostructured polymer: short review. Bioresource 3:1403–1418

    Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  Google Scholar 

  • Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  • Kennedy F, Phillips GO, Williams EPA (1987) Wood and cellulosic: industrial utilization, biotechnology, structure and properties. Halsted, New York, p 1130

    Google Scholar 

  • Khan AS, Man Z, Bustam MA, Nasrullah A, Ullah Z, Sarwono A, Shah FU, Muhammad N (2018) Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohyd Polym 181:208–214

    Article  CAS  Google Scholar 

  • Kim H, Ahn Y, Kwak S-Y (2016) Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass Bioenerg 93:243–253

    Article  CAS  Google Scholar 

  • Lehto J, Alén R (2013) Alkaline pre-treatment of hardwood chips prior to delignification. J Wood Chem Technol 33:77–91

    Article  CAS  Google Scholar 

  • Leiviskä T, Rämö J (2008) Coagulation of wood extractives in chemical pulp bleaching filtrate by cationic polyelectrolytes. J Hazard Mater 153:525–531

    Article  Google Scholar 

  • Leiviskä T, Rämö J, Nurmesniemic H, Pöykiö R, Kuokkanene T (2009) Size fractionation of wood extractives, lignin and trace elements in pulp and paper mill wastewater before and after biological treatment. Water Res 43:3199–3206

    Article  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Env 15:25–33

    Article  Google Scholar 

  • Liu H, Hu H, Jahan MS, Ni Y (2013) Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Ind Eng Chem Res 52:3974–3979

    Article  CAS  Google Scholar 

  • López-Gonzales D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2013) Thermogravimetric mass spectrometric analysis. Bioresour Technol 143:562–574

    Article  Google Scholar 

  • Mariano M, Cercená R, Soldi V (2016) Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind Crop Prod 94:454–462

    Article  CAS  Google Scholar 

  • Marinelli AL, Monteiro MR, Ambrósio JD, Branciforti MC, Kobayashi M, Nobre AD (2008) Development of polymeric composites with natural fibers: a contribution to the sustainability of Amazon. Polimeros 18:92–99

    CAS  Google Scholar 

  • Mirmehdi S, Hein PRG, Sarantópoulos CIGL, Dias MV, Tonoli GHD (2017) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2017.11.007

    Article  Google Scholar 

  • Moradbak A, Tahir PM, Mohamed AZ, Tahir PMD, Abdi MM, Razalli RL, Halis R (2018) Isolation of cellulose nanocrystals from Gigantochloa scortechinii ASAM pulp. Eur J Wood Prod 76(3):1021–1027

    Article  CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • Moubarik A, Grimi N, Boussetta N (2013) Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Compos Part B Eng 52:233–238

    Article  CAS  Google Scholar 

  • Muranaka Y, Nakagawa H, Hasegawa I, Maki T, Hosokawa J, Ikuta J, Mae K (2017) Lignin-based resin production from lignocellulosic biomass combining acidic saccharification and acetone-water treatment. Chem Eng J 308:754–759

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Nakamura T, Kawamoto H, Saka S (2008) Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimers. J Anal Appl Pyrol 81:173–182

    Article  CAS  Google Scholar 

  • Nevárez LAM, Casarrubias LB, Celzard A, Fierro V, Muñoz VT, Davila AC, Lubian JRT, Sánchez GG (2011) Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films. Sci Technol Adv Mater 12:1–16

    Article  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nygårds S (2011) Nanocellulose in pigment coatings: aspects of barrier properties and printability in offset. In: Dissertation (Master’s in Physics, Chemistry)—Linköpin University, p 42

  • Oliveira PE, Pesenti H, Cunha AG, Gacitúa W, Petit-Breuilh X (2018) Exploring an oxidative bleaching treatment for Chilean bamboo: a source of cellulose for biofuel generation and the nanotech industry. Eur J Wood Prod 76(3):1009–1019

    Article  CAS  Google Scholar 

  • Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos Part A Appl S 84:186–195

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plastic Polym Technol 2:9–16

    Google Scholar 

  • Puangsin B, Fujisawa S, Kuramae R et al (2013) TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. J Polym Environ 21:555–563

    Article  CAS  Google Scholar 

  • Qin M, Hannuksela T, Holmbom B (2003) Physico-chemical characterisation of TMP resin and related model mixtures. Colloids Surf A 221:243–254

    Article  CAS  Google Scholar 

  • Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314

    Article  Google Scholar 

  • Rohaizu R, Wanrosli WD (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639

    Article  CAS  Google Scholar 

  • Scatolino MV, Bufalino L, Mendes LM, Guimarães Júnior M, Tonoli GHD (2017a) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci Technol 51:1095–1115

    Article  CAS  Google Scholar 

  • Scatolino MV, Silva DW, Bufalino L, Tonoli GHD, Mendes LM (2017b) Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia Engineer 200:155–161

    Article  CAS  Google Scholar 

  • Sena Neto AR, Araujo MAM, Souza FVD, Mattoso LHC, Marconcini JM (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crop Prod 43:529–537

    Article  CAS  Google Scholar 

  • Serna LVD, Alzate CEO, Alzate CAC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Biores Technol 199:113–120

    Article  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A 39:1632–1637

    Article  Google Scholar 

  • Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Subhedar PB, Ray P, Gogate PR (2017) Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrason Sonochem 40:140–150

    Article  Google Scholar 

  • Sun RC, Tomkinson J, Zhu W, Wang SQ (2000) Delignification of maize stems by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. 1. Physicochemical and structural characterization of the solubilized lignins. J Agr Food Chem 48:1253–1262

    Article  CAS  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  Google Scholar 

  • Sundberg A, Strand L, Vahasalo B, Holmbom (2009) Phase distribution of resin and fatty acids in colloidal wood pitch emulsions at different pH-Levels. J Dispers Sci Technol 30:912–919

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–86

    Article  CAS  Google Scholar 

  • Terezo RF (2010) Technological evaluation of paricá and its use in laminated wood structures. Thesis (PhD in Structural Engineering) Federal University of Santa Catarina

  • Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855

    Article  CAS  Google Scholar 

  • Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sá VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256

    Article  CAS  Google Scholar 

  • Velásquez-Cock J, Gañán P, Posada P et al (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Ind Crop Prod 85:1–10

    Article  Google Scholar 

  • Viana LC (2013) Development of nanostructured cellulose films from the kraft pulp of Pinus sp. Thesis (PhD in Forest engineering) Federal University of Parana

  • Wang H, Li D, Zhang R (2013) Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources 8:1374–1384

    Google Scholar 

  • Wigell A, Brelid H, Theliander H (2007) Degradation/dissolution of softwood hemicellulose during alkaline cooking at different temperatures and alkali concentrations. Nord Pulp Pap Res J 22:488–494

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

  • Xie Y, Fu Q, Wang Q, Xiao Z, Militz H (2013) Effects of chemical modification on the mechanical properties of wood. Eur J Wood Prod 71:401–416

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu J, Paterson N, Blamey J, Millan M (2017) Cellulose, xylan and lignina interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149

    Article  CAS  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447

    Article  CAS  Google Scholar 

  • Zhang W, Zhang X, Lu C, Wang Y, Deng Y (2012) Flexible and transparent paper-based ionic diode fabricated from oppositely charged microfibrillated cellulose. J Phys Chem C 116:9227–9234

    Article  CAS  Google Scholar 

  • Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97:695–702

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Javier Cruz J et al (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG, Coordenacão de Aperfeiçoamento de Pessoa de Nível Superior—CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazilian Research Network in Lignocellulosic Composites and Nanocomposites—RELIGAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Vanoli Scatolino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scatolino, M.V., Fonseca, C.S., da Silva Gomes, M. et al. How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers. Eur. J. Wood Prod. 76, 1581–1594 (2018). https://doi.org/10.1007/s00107-018-1343-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1343-7

Navigation