Skip to main content

Reduction of the surface colour variability of thermally modified Eucalyptus globulus wood by colour pre-grading and homogeneity thermal treatment

Abstract

A new method that consists of combining wood pre-grading by surface colour followed by the application of homogeneity thermal treatments is proposed to reduce the surface colour variability of the thermally modified blue gum wood. To identify the conditions of the homogeneity thermal treatment for two pre-graded groups with different initial surface colours (pinkish and yellowish), the effects of applying 25 different thermal treatment intensities to such groups were analysed. The effects of this method on mass loss and volumetric swelling were also analysed. Results show that an optical pre-grading of the wood samples and treatments under different conditions can reduce the colour variability of the blue gum wood samples, as well as the volumetric swelling. Mass loss was not homogenised after the treatment, but the difference of masses between the two groups was similar to their untreated state. The application of this new methodology may be of interest for the sawn timber industry to bring more uniform boards on the markets and to promote Eucalyptus globulus as a price-competitive and sustainable alternative timber.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvarez-Noves H, Fernández-Golfin JI (1996) Secado de madera aserrada de Eucalyptus globulus al vacío continuo con vapor sobrecalentado. Comparación del secado tradicional en cámara (Drying of Eucalyptus globulus sawn wood in continuous vacuum with overheated steam. Comparison of traditional kiln drying) (In Spanish) Asociación de Investigación Técnica de las Industrias de la Madera y. Corcho AITIM 181:69–72

    Google Scholar 

  2. Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A (2003) Color stability of heat-treated wood during artificial weathering. Holz Roh Werkst 61(3):221–226

    Article  CAS  Google Scholar 

  3. Bermúdez J, Touza MC, Sanz F (2002) El Manual de la Madera de Eucalipto blanco (The blue gum wood manual) (In Spanish) CIS-Madera. Fundación para el Fomento de la Calidad Industrial y Desarrollo Tecnológico da Galicia, San Cibrao das Viñas, Ourense, Spain. ISBN: 84-607

  4. Bradbury GJ (2005) A comparison of timber quality of blackwood grown in young swamp forest, fenced regeneration, and a plantation. Tasforests Hobart 16:95

    Google Scholar 

  5. Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L* a* b* color data on homogenized wood samples. Holzforschung 61:19–22

    Article  CAS  Google Scholar 

  6. CIE (2001) Improvement to industrial colour-difference evaluation. Central Bureau of the CIE, Vienna, (CIE Publication No. 142)

    Google Scholar 

  7. Correal-Mòdol E, Wimmer T, Huber H, Schnabel T (2014) Approach for colour homogenisation of chestnut (Castanea sativa [Mill.]) by thermal modification. Int Wood Prod J 5(2):69–73

    Article  Google Scholar 

  8. Defoirdt N, Wuijtens I, De Boever L, Coppens H, Van den Bulcke J, Van Acker J (2012) A colour assessment methodology for oak wood. Ann For Sci 69(8):939–946

    Article  Google Scholar 

  9. Esteves B, Marques AV, Domingos I, Pereira H (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41(3):193–207

    Article  CAS  Google Scholar 

  10. Esteves B, Marques AV, Domingos I, Pereira H (2008) Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 42(5):369–384

    Article  CAS  Google Scholar 

  11. Ferreira M, Kageyama PY (1978) Melhoramento genético da densidade da madeira de eucalipto (Genetic improvement of eucalyptus wood density) (In Portuguese). Boletim informativo IPEF Piracicaba 6(20):1–15

    Google Scholar 

  12. Garcia RA, Oliveira NSD, Nascimento AMD, Souza NDD (2014) Colorimetry of woods from Eucalyptus and Corymbia genus and its correlation with density. Cerne 20(4):509–517

    Article  Google Scholar 

  13. González O, Touza MC (2009) Properties of thermally modified wood of Eucalyptus globulus from Spanish plantations. International Research Group on Wood Protection. 40th annual meeting, Beijing, China, IRG/WP 09-40470

  14. González-Hernández C, Miguel-Peredo L (2000) Evaluación de programas de secado en madera joven y adulta de tres especies de Eucalyptus (Evaluation of kiln-drying programs in young and adult wood samples of three species of Eucalyptus) (In Spanish). Maderas Ciencia y Tecnología 2(1):29–48

    Google Scholar 

  15. González-Pena MM, Hale MDC (2009) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 63(4):385–393

    Google Scholar 

  16. Hauptmann M, Pleschberger H, Mai C, Follrich J, Hansmann C (2012) The potential of color measurements with the CIEDE2000 equation in wood science. Eur J Wood Prod 70(4):415–420

    Article  Google Scholar 

  17. ISO 11664-4 (2008) Colorimetry—part 4: CIE 1976 L*a*b* colour space. CIE Central Bureau, Vienna

    Google Scholar 

  18. Janin G, González J, Ananías R, Charrier B, Fernandes G, Dilem A (2001) Aesthetics appreciation of wood colour and patterns by colorimetry. Part 1. Colorimetry theory for the CIELab systems. Maderas Ciencia y Tecnología 3(1–2):3–13

    Google Scholar 

  19. Lima JT, Breese MC, Cahalan CM (2000) Variation in wood density and mechanical properties in Eucalyptus clones. In: Proceedings of the Future of Eucalypts for wood products. Launceston, March: 282–290

  20. Montes CS, Hernández RE, Beaulieu J, Weber JC (2008) Genetic variation in wood color and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. New For 35(1):57–73

    Article  Google Scholar 

  21. Neumann RJ (1989) Kiln drying young Eucalyptus globulus boards from green. IUFRO International Wood Drying Symposium, Seattle, July, pp 107–115

  22. Nolan G, Washusen R, Jennings S, Greaves B, Parsons M (2005) Eucalypt plantations for solid wood products in Australia—a review. Forest and Wood Products Australia Ltd., Project No.: PN04.3002

  23. Northway RL, Blakemore PA (1996) Evaluation of drying methods for plantation grown eucalypt timber: (c) sawing, accelerated drying and utilisation characteristics of Eucalyptus globulus. Client report no. 117, CSIRO Forestry and Forest Products. Forest and Wood Products Research and Development Corporation, Melbourne, Australia

  24. Sandermann W, Schlombom F (1962) Über die Wirkung gefilterten ultravioletten Lichtes auf Holz—Zweite Mitteilung: Änderung von Farbwert und Farbempfindung an Holzoberflächen (On the effect of filtered ultraviolet light on wood—part II: kind and magnitude of colour difference on wood surfaces) (In German). Holz Roh Werkst 20:285–291

    Article  CAS  Google Scholar 

  25. Schnabel T, Zimmer B, Petutschnigg AJ, Schönberger S (2007) An approach to classify thermally modified hardwoods by color. Forest Prod J 57(9):105–110

    Google Scholar 

  26. Silva JC (2002) Caracterização da madeira de Eucalyptus grandis Hill ex. Maiden, de diferentes idades, visando a sua utilização na indústria moveleira (Characterization of the wood of Eucalyptus grandis Hill ex. Maiden, of different ages, for the furniture industry) (In Portuguese) Tese, Doutorado em Engenharia Florestal, (Doctoral thesis) Universidade Federal do Paraná

  27. Touza MC (2001) Proyecto de investigación sobre sistemas de aserrado adecuados para procesar Eucalyptus globulus con tensiones de crecimiento (Research project on suitable sawing systems to process Eucalyptus globulus wood with growth tensions) (In Spanish). CIS Madera 6:6–31

    Google Scholar 

  28. UNE 56–531–77 (1977) Características físico-mecánicas de la madera. Determinación del peso específico (Physico-mechanical characteristics of wood. Determination of the specific weight) (In Spanish). Asociación Española de Normalización y Certificación (AENOR). Madrid

  29. Villegas MS, Rivera SM (2002) Revisión xilológica de las principales especies del género Eucalyptus L’Herit. cultivadas en Argentina (Xylological review of the main species of the genus Eucalyptus L’Herit. cultivated in Argentina) (In Spanish) Revista de la Facultad de Agronomía. La Plata 105(1):9–28

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the COST Action FP1303 “Performance of bio-based building materials” for financing this research and the Salzburg University of Applied Sciences, Kuchl campus, for their help and facilities. This research was partially funded by the Brazilian National Council for Scientific and Technological Development (CNPq) through the doctoral grant of Carolina Griebeler by means of the “Ciência sem Fronteiras” program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carolina Griebeler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Griebeler, C., Tondi, G., Schnabel, T. et al. Reduction of the surface colour variability of thermally modified Eucalyptus globulus wood by colour pre-grading and homogeneity thermal treatment. Eur. J. Wood Prod. 76, 1495–1504 (2018). https://doi.org/10.1007/s00107-018-1310-3

Download citation