European Journal of Wood and Wood Products

, Volume 76, Issue 4, pp 1121–1128 | Cite as

Variation in selected mechanical properties of Japanese larch (Larix kaempferi, [Lamb.] Carr.) progenies/provenances trials in Eastern Canada

  • Claudia B. Cáceres
  • Roger E. Hernández
  • Yves Fortin


12 years old trees from 20 progenies/provenances of Japanese larch (Larix kaempferi, [Lamb.] Carr.), planted in Quebec, were sampled to study the variation in selected mechanical properties. Two standard wood samples and one 10-mm diameter increment core were taken from each tree at breast height. The parallel-to-grain compliance coefficient and ultimate crushing strength were evaluated on the standard samples at air-dry conditions. The dynamic compliance coefficient was measured on increment cores using an ultrasonic wave propagation method. Differences in all mechanical properties among progenies/provenances were significant. Lowest static compliance coefficient and highest ultimate crushing strength were found in progenies/provenances 8934, 7795, 7283, 8962, 8907, 7794, and 8939, being the most interesting for a lumber end-use. Among them, progenies/provenances 7283, 8934, 7794, 7795, 8962, and 8907 also showed lowest dynamic compliance coefficient. The latter coefficient tended to be lowest near the pith and then increased outward towards the bark. There was also a highly significant correlation between static mechanical properties, and a moderate correlation between static and dynamic compliance coefficients. Ultimate crushing strength was moderately correlated to wood density.



Funding for this project was provided by the Ministry of Forests, Wildlife, and Parks of Quebec. The authors thank Ante Stipanicic and Michel Beaudoin for their valuable assistance. The authors also thank Hristo Iliev for his contribution during the laboratory experiments


  1. Alteyrac J, Cloutier A, Ung CH, Zhang SY (2006) Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fiber Sci 38:229–237Google Scholar
  2. Apiolaza LA (2009) Very early selection for solid wood quality: screening for early winners. Ann For Sci 66:601p1–p10CrossRefGoogle Scholar
  3. Auty D, Achim A (2008) The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry 81:475–487CrossRefGoogle Scholar
  4. Bastien J-Ch, Keller R (1980) Intérêts comparés du Mélèze hybride (Larix × eurolepis Henry) avec les deux espèces parentes. Rev Forest Fr 32:521–530CrossRefGoogle Scholar
  5. Beaudoin M, Masanga BO, Poliquin J, Beauregard RL (1989) Physical and mechanical properties of plantation grown tamarack. Forest Prod J 39:5–10Google Scholar
  6. Brashaw BK, Bucur V, Divos F, Goncalves R, Lu JX, Meder R, Pellerin RF, Potter S, Ross RJ, Wang XP, Yin YF (2009) Nondestructive testing and evaluation of wood: a worldwide research update. Forest Prod J 59:7–14Google Scholar
  7. Bucur V (1981) Wood dynamical young modulus determination on increment core. Ann Sci Forest 38:283–298CrossRefGoogle Scholar
  8. Bucur V (1983) An ultrasonic method for measuring the elastic-constants of wood increment cores bored from living trees. Ultrasonics 21:116–126CrossRefGoogle Scholar
  9. Bucur V, Böhnke I (1994) Factors affecting ultrasonic measurements in solid wood. Ultrasonics 32:385–390CrossRefGoogle Scholar
  10. Cáceres CB, Hernández RE, Fortin Y, Beaudoin M (2017) Wood density and extractive content variation among Japanese larch (Larix kaempferi, [Lamb.] Carr.) progenies/provenances trials in Eastern Canada. Wood Fiber Sci 49:363–372Google Scholar
  11. Cáceres CB, Hernández RE, Fortin Y (2018) Shrinkage variation in Japanese larch (Larix kaempferi, [Lamb.] Carr.) progenies/provenances trials in Eastern Canada. Wood Mater Sci Eng 13:97–103CrossRefGoogle Scholar
  12. Canadian Wood Council (2017) Machine graded lumber. Accessed 05 July 2017
  13. Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods—the influence of microfibril angle. Forest Prod J 44:43–48Google Scholar
  14. Charron S, Jourez B, Marchal M, Hebert J (2003) Comparison study of physical and mechanical characteristics of European (Larix decidua Mill.), Japanese (Larix kaempferi (Lambert) Carr.) and hybrid (Larix x eurolepis Henry) larch woods. Biotechnol Agron Soc Environ 7:5–16Google Scholar
  15. Chauret G, Zhang SY (2002) Wood characteristics and end-use potential of two fast-growing exotic larch species (Larix gmelinii and Larix siberica). In: Grown in Ontario. Report Project No. 3563. Forintek Canada Corp., QuebecGoogle Scholar
  16. Chen Z-Q, Karlsson B, Lundqvist S-O, García Gil MR, Olsson L, Wu HX (2015) Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce. Ann For Sci 72:499–508CrossRefGoogle Scholar
  17. Chui YH, MacKinnon-Peters G (1995) Wood properties of exotic larch grown in Eastern Canada and Northeastern United States. Forest Chron 71:639–646CrossRefGoogle Scholar
  18. Cown DJ, Hebert J, Ball R (1999) Modelling radiata pine lumber characteristics. Part 1: Mechanical Properties of small clears. New Zeal J For Sci 29:203–213Google Scholar
  19. Einspahr DW, McDonough TJ, Joachimides T (1983) Kraft pulping characteristics of European, Japanese, and European x Japanese larch hybrids. Tappi J 66:72–76Google Scholar
  20. Farrar JL (1995) Trees of the northern United States and Canada. Fitzhenry and Whiteside Ltd., OttawaGoogle Scholar
  21. Fischer C, Vestøl GI, Øvrum A, Høibø OA (2015) Pre-sorting of Norway spruce structural timber using acoustic measurements combined with site-, tree- and log characteristics. Eur J Wood Prod 73:819–828CrossRefGoogle Scholar
  22. Forest Products Laboratory. 2010. Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WIGoogle Scholar
  23. Hernández RE, Koubaa A, Beaudoin M, Fortin Y (1998) Selected mechanical properties of fast-growing poplar hybrid clones. Wood Fiber Sci 30:138–147Google Scholar
  24. Herzig L (1991) Évaluation du module d’Young de bois d’épinette par méthode ultrasonore sur carottes de sondage. [Young`s modulus evaluation of white spruce wood by the ultrasonic method in increment cores] Mémoire (M. Sc.), Université LavalGoogle Scholar
  25. Isebrands JG, Hunt CM (1975) Growth and wood properties of rapid-grown Japanese larch. Wood Fiber Sci 7:119–128Google Scholar
  26. Jacques D, Marchal M, Curnel Y (2004) Relative efficiency of alternative methods to evaluate wood stiffness in the frame of hybrid larch (Larix × eurolepis Henry) clonal selection. Ann For Sci 61:35–43CrossRefGoogle Scholar
  27. Jessome AP (2000) Strength and related properties of woods grown in Canada. Special publication SP-514E. Forintek Canada Corp., QuebecGoogle Scholar
  28. Keith CT, Chauret G (1988) Basic wood properties of European larch from fast-growth plantations in Eastern Canada. Can J For Res 18:1325–1331CrossRefGoogle Scholar
  29. Labrecque G (1992) Relation entre les propriétés mécaniques mesurées en flexion statique et le module d’Young dynamique mesuré sur carotte de sondage. [Relationship between static bending properties and dynamic Young’s modulus measured in an increment core] Rapport interne de projet d’études. Département des sciences du bois, Université Laval, QuébecGoogle Scholar
  30. Legg M, Bradley S (2016) Measurement of stiffness of standing trees and felled logs using acoustics: A review. J Acoust Soc Am 139:588–604CrossRefPubMedGoogle Scholar
  31. Loo J, Fowler DP, Schneider MH (1982) Geographic-variation in specific gravity among Japanese larch from different provenances. Wood Fiber Sci 14:281–286Google Scholar
  32. MRNF (2007) La forêt québécoise et sa gestion. [The Quebec forest and its management]. Ministère des Forêts, Faune et Parcs, Gouvernement du Québec. Accessed 05 July 2017
  33. NFDP (2015) National forestry database. Silviculture—data compendium. Accessed 14 Nov 2017
  34. NGLA (2003) Standard grading rules for Canadian lumber. National lumber grades authority, New Westminster, BCGoogle Scholar
  35. NRCAN (2017) Machine stress rated lumber. Accessed 14 Nov 2017
  36. Pâques LE, Millier F, Rozenberg P (2010) Selection perspectives for genetic improvement of wood stiffness in hybrid larch (Larix × eurolepis Henry). Tree Genet Genomes 6:83–92CrossRefGoogle Scholar
  37. Paradis N, Auty D, Carter P, Achim A (2013) Using a standing-tree acoustic tool to identify forest stands for the production of mechanically-graded lumber. Sensors 13:3394–3408CrossRefPubMedPubMedCentralGoogle Scholar
  38. Perron M (2011) Le mélèze hybride du Québec: performant et racé. [The hybrid larch of Quebec: improved and efficient]. Note de recherche forestière no 3. Ministère des Forêts, de la Faune et des Parcs, QuébecGoogle Scholar
  39. Rainville A, Desponts M, Beaudoin R, Périnet P, Mottet M-J, Perron M (2003) L’amélioration des arbres au Québec: un outil de performance industrielle et environnementale. [Improving trees in Quebec: an industrial and environmental performance tool]. Note de recherche forestière no 127. Ministère des Forêts, de la Faune et des Parcs, QuebecGoogle Scholar
  40. SAS Institute (2012) SAS package version 9.4. SAS Institute, CaryGoogle Scholar
  41. Shmulsky R, Jones PD (2011) Forest products and wood science: an introduction, 6th edn. Wiley-Blackwell, LondonCrossRefGoogle Scholar
  42. Stipanicic A (1975) L’amélioration du genre mélèze (Larix sp.) au service de la recherche du Ministère des terres et forêts. [Improvement of the larch species (Larix sp.). In: in the research department of the Ministry of lands and forests]. Note de recherche forestière no 20. Ministère des Forêts, de la Faune et des Parcs, QuebecGoogle Scholar
  43. Urhan OS, Kolpak SE, Jayawickrama KJS, Howe GT (2014) Early genetic selection for wood stiffness in juvenile Douglas-fir and western hemlock. Forest Ecol Manag 320:104–117CrossRefGoogle Scholar
  44. Verville A (1981) Étude physico-mécanique de quelques espèces du genre Larix en plantation. [Physico-mechanical study of some species of the genus Larix in plantation]. Mémoire (M.Sc.), Université LavalGoogle Scholar
  45. Yang JL, Evans R (2003) Prediction of MOE of eucalypt wood from microfibril angle and density. Holz Roh Werkst 61:449–452CrossRefGoogle Scholar
  46. Yang JL, Fortin Y (2001) Evaluating strength properties of Pinus radiata from ultrasonic measurements on increment cores. Holzforschung 55:606–610Google Scholar
  47. Zhang SY, Koubaa A (2008) Softwoods of Eastern Canada: Their silvics, characteristics, manufacturing and end-uses. FP Innovations, QuebecGoogle Scholar
  48. Zhu JJ, Nakano T, Hirakawa Y (2000) Effects of radial growth rate on selected indices for juvenile and mature wood of the Japanese larch. J Wood Sci 46:417–422CrossRefGoogle Scholar
  49. Zobel B, Jett JB (1995) Genetics of wood production. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Claudia B. Cáceres
    • 1
  • Roger E. Hernández
    • 1
  • Yves Fortin
    • 1
  1. 1.Centre de recherche sur les matériaux renouvelables, Département des sciences du bois et de la forêtUniversité LavalQuébecCanada

Personalised recommendations