European Journal of Wood and Wood Products

, Volume 76, Issue 3, pp 979–988 | Cite as

Wood nails to fix softwoods: characterization of structural deformation and lignin modification

  • H. Korte
  • G. Koch
  • K. C. Krause
  • T. Koddenberg
  • S. Siemers


Softwoods can be nailed with high density solid wood like Santos Rosewood (Machaerium scleroxylon) or nails made of densified laminated beech wood composite by hammering or shooting, for example with air nail guns, without pre-drilling. Shooting with about 30 m/s causes friction between nail surface and softwood matrix, heating up the interface to temperatures high enough to soften lignin. Re-condensation of softened lignin causes wood welding which doubles pull out strength in comparison to wood nails fixed without wood welding. Changes in lignin UV-absorption within the single cell wall layer and deformation of main anatomical features of spruce wood tissue are characterized by scanning UV microspectrophotometry (UMSP) whereas structural deformations of spruce wood tissue are revealed by X-ray micro-computed tomography (µ-CT).


  1. Andersons B, Noldt G, Koch G, Andersone I, Feldmane AM, Biziks V, Irbe I, Grnins J (2016) Scanning UV microspectrophotometry as a tool to study the changes of lignin in hydrothermally modified wood. Holzforschung 70(3):215–221CrossRefGoogle Scholar
  2. Barcikowski S, Koch G, Odermatt J (2006) Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites. Holz Roh Werkst 64:94–103CrossRefGoogle Scholar
  3. Boonstra MJ, Tjeerdsma BF (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64:204–211CrossRefGoogle Scholar
  4. de Samsonow in Watermael A (1934) Patent DE 631126Google Scholar
  5. Delmotte L, Mansouri HR, Omrani P, Pizzi A (2009) Influence of wood welding frequency on wood constituents chemical modification. J Adhes Sci Technol 23:1271–1279CrossRefGoogle Scholar
  6. Evans PD, Lube V, Averdunk H, Limaye A, Turner M, Kingston A, Senden TJ (2015) Visualizing the microdistribution of zinc borate in oriented strand board using X-ray microcomputed tomography and SEM-EDX”. J Compos. Google Scholar
  7. Fergus BJ, Goring DAI (1970) The location of guaiacyland syringyl lignins in birch xylem tissue. Holzforschung 24:113–124CrossRefGoogle Scholar
  8. Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley Interscience, New York, pp 241–266Google Scholar
  9. Herzog T, Volz M (1996) Teil 2 Grundlagen: Baustoff. In: Natterer J, Herzog T, Volz M (eds) Holzbau Atlas Zwei, 2nd edn. Arbeitsgemeinschaft Holz e.V., Düsseldorf und Institut für Internationale Architektur-Dokumentation GmbH, München, p 37Google Scholar
  10. Jamnitzky J (2016) Steel-free adhesively bonded construction for testing of electronic equipment by the German Army. 22. Int. Holzbau-Forum (IHF), Garmisch-Partenkirchen, Germany, pp 131–140Google Scholar
  11. Kleist G, Schmitt U (1999) Evidence of accessory compounds in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh Werkst 57:93–95CrossRefGoogle Scholar
  12. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567CrossRefGoogle Scholar
  13. Koch G, Schmitt U (2013) Topochemical and electron microscopic analyses on the lignification of individual cell wall layers during wood formation and secondary changes. In: Fromm J (Hrsg): Cellular Aspects of Wood Formation, Plant Cell Monographs 20, Springer, BerlinCrossRefGoogle Scholar
  14. Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Wood Fibre cell walls: methods to study their formation, structure and properties. Eds. U. Schmitt et. al. Swedish University of Agricultural Sciences, Uppsala, pp 119–130Google Scholar
  15. Korte H (2017) Holz ersetzt Stahl?—die Neuerfindung des Nagels (Wood replaces steel?—the reinvention of the nail) (In German). Holz-Zentralblatt 20:470Google Scholar
  16. Lademann O (2017) Mechanische Eigenschaften des Holznagels Beck “LignoLoc” (Mechanical properties of the wood nail Beck “LignoLoc”) (In German). Accessed 08 Aug 2017
  17. Mahnert KC, Adamopoulos S, Koch G, Militz G (2013) Topochemistry of heat-treated and N-methylol melamine modified wood of Koto (Pterygota macrocarpa K. Schum.) and Limba (Terminalia superba Engl. et Diels). Holzforschung 67:137–146CrossRefGoogle Scholar
  18. Nimz H (1973) Chemistry of potential chromophoric groups in beech lignin. Tappi 56:124–126Google Scholar
  19. Oehm WN, Powell G, (1920) Patent US 1412626Google Scholar
  20. Pizzi A, Despres A, Mansouri HR, Leban J-M, Rigolet S (2006) Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. J Adhes Sci Technol 20(5):427–436CrossRefGoogle Scholar
  21. Ryuichi I, Tadashi O, Takahisa N, Koji A (2014) Changes in wood temperature under high-speed friction. J Wood Sci 60:313–320CrossRefGoogle Scholar
  22. Scheiding W (2017) Prüfbericht Auftrags-Nr.:2216072 (Test report No. 2216072) (In German). Accessed 08 Aug 2017
  23. Settgast J, Krauß R, Wagner R, Munro P, Wildung D, Hauptmann GR, Liepe J, Fischer R (1980) Tutanchamun. Verlag Philipp von Zabern, Mainz, GermanyGoogle Scholar
  24. Siemers S, Korte H (2016) Patent WO 2016180900A1Google Scholar
  25. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  26. Stamm B, Windeisen E, Natterer J, Wegener G (2006) Chemical investigations on the thermal behaviour of wood during friction welding. Wood Sci Technol 40:615–627CrossRefGoogle Scholar
  27. Stäuble H (2010) Steinzeit jenseits der Steine (Stone age beyond stones) (In German). SdW 3:62–69Google Scholar
  28. Tjeerdsma BF, Boonstra M, Pizzi A, Tekeley P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvements. Holz Roh Werkst 56:149–153CrossRefGoogle Scholar
  29. Tucker PS, Showers N (1998) Patent US 6168362B1Google Scholar
  30. Ucar G, Meier D, Faix O, Wegener G (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequioadendron giganteum (Lindl.) wood and MWLs isolated hereof. Holz Roh Werkst 63:57–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.HANS KORTE Innovationsberatung Holz & FasernWismarGermany
  2. 2.Thuenen, Institute of Wood ResearchHamburgGermany
  3. 3.Wood Biology and Wood Products, Faculty of Forest SciencesUniversity of GoettingenGoettingenGermany
  4. 4.Raimund Beck Nageltechnik GmbHMauerkirchenAustria

Personalised recommendations