Advertisement

European Journal of Wood and Wood Products

, Volume 76, Issue 3, pp 1021–1027 | Cite as

Isolation of cellulose nanocrystals from Gigantochloa scortechinii ASAM pulp

  • Amin Moradbak
  • Paridah Md. Tahir
  • Ainun Zuriyati Mohamed
  • Mahnaz M. Abdi
  • Rawaida Liyana Razalli
  • Rasmina Halis
Original

Abstract

This study aims to characterize the cellulose nanocrystals (CNC) isolated from alkaline sulfite anthraquinone and methanol (ASAM) bamboo (Gigantochloa scortechinii) pulp. The hydrolysis was carried out using 64% (w/w) sulfuric acid at 45 °C for 45 min. The CNC was subjected to field emission scanning electronic microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The measurement of diameter for CNC was done by FESEM and TEM, which was in the range of 10–20 nm. The XRD and FTIR results exhibited that bamboo CNC has higher crystallinity index, 78% compared to bleached ASAM bamboo pulp, 60%.

Notes

Acknowledgements

The authors are grateful for the support of the Institute of Tropical Forestry and Forest Products (INTROP) and Research Management Center (RMC)—Universiti Putra Malaysia (UPM), Grant no. PB 9413400.

References

  1. Ahola S, Osterberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314CrossRefGoogle Scholar
  2. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRefGoogle Scholar
  3. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRefPubMedGoogle Scholar
  4. Besbes I, Rei Vilar M, Boufi S (2011) Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206CrossRefGoogle Scholar
  5. Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Cellulose—fundamental aspects and current trends, INTECH, pp 159–191Google Scholar
  6. Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193CrossRefGoogle Scholar
  7. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydr Polym 80(3):852–859CrossRefGoogle Scholar
  8. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRefPubMedGoogle Scholar
  9. Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J 23(3):299–304CrossRefGoogle Scholar
  10. Feldman D (1985) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin and New YorkGoogle Scholar
  11. Ioelovich M (2012) Study of cellulose interaction with concentrated solutions of sulfuric acid. Int Scholar Res Netw 1–7Google Scholar
  12. Ivanova NV, Korolenko EA, Korolik EV, Zhbankov RG (1989) Mathematical processing of the IR spectrum of cellulose. Zhurnal Prikladnoi Spektroskopii 51(2):301–306Google Scholar
  13. Jahan MS, Rubaiyat A, Sabina R (2007) Evaluation of cooking processes for Trema orientalis pulping. J Sci Ind Res 66(10):853–859Google Scholar
  14. Jonoobi M, Harun J, Tahir PM, Zaini LH, SaifulAzry S, Makinejad MD (2010) Characteristics of nanofibers extracted from kenaf core. BioResources 5(4):2556–2566Google Scholar
  15. Khristova P, Kordsachia O, Patt R, Khider T, Karrar I (2002) Alkaline pulping with additives of kenaf from Sudan. Ind Crops Prod 15(3):229–235CrossRefGoogle Scholar
  16. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  17. Kontturi E, Tammelin T, Osterberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35(12):1287–1304CrossRefPubMedGoogle Scholar
  18. Kordsachia O, Patt R, Rachor G (1988) Untersuchungen zum Methanol-Sulfitaufschluß (Study on methanol-sulfite pulping). Das Papier 42(6):261–269 (in German)Google Scholar
  19. Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Master of Science. Louisiana State UniversityGoogle Scholar
  20. Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6(4):4271–4281Google Scholar
  21. Li J, Wei X, Wang Q et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRefPubMedGoogle Scholar
  22. Ma N, Liu D, Liu Y, Sui G (2015) Extraction and characterization of nanocellulose from Xanthoceras Sorbifolia Husks. Int J Nanosci Nanoeng 2(6):43–50Google Scholar
  23. Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification. Rev Mater 6(5):1745–1766Google Scholar
  24. Monshi A, Foroughi MR, Monshi MR (2012) Modified scherrer equation to estimate more accurately nano crystallite size using XRD. World J Nano Sci Eng 2(3):154–160CrossRefGoogle Scholar
  25. Moradbak A, Tahir PM, Ainun ZMA, Halis R (2016) Alkaline sulfite anthraquinone and methanol pulping of Bamboo (Gigantochloa scortechinii). BioResources 11(1):235–248Google Scholar
  26. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRefGoogle Scholar
  27. Morelli CL, Marconcini JM, Pereira FV, Bretas RES, Branciforti MC (2012) Extraction and characterization of cellulose nanowhiskers from Balsa wood. Macromol Symp 319(1):191–195CrossRefGoogle Scholar
  28. Nacos M, Katapodis P, Pappas C et al (2006) Kenaf xylan—a source of biologically active acidic oligosaccharides. Carbohydr Polym 66(1):126–134CrossRefGoogle Scholar
  29. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefPubMedGoogle Scholar
  30. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRefPubMedGoogle Scholar
  31. Patt R, Knoblauch J, Faix O, Kordsachia O, Puls J (1991) Lignin and carbohydrate reactions in alkaline sulfite, anthraquinone, methanol (ASAM) pulping. Das Papier 45(7):389–396Google Scholar
  32. Peter GF, Benton DM, Bennett K (2003) A simple, direct method for measurement of microfibril angle in single fibres using differential interference contrast microscopy. J Pulp Pap Sci 29(8):274–280Google Scholar
  33. Razalli RL, Abdi MM, Tahir PM, Moradbak A, Sulaiman Y, Heng LY (2017) Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv 7(41):25191–25198CrossRefGoogle Scholar
  34. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from agave angustifolia fibre. BioResources 8(2):1893–1908CrossRefGoogle Scholar
  35. Segal L, Creely L, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffrac- tometer. Text Res J 29:786–794CrossRefGoogle Scholar
  36. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRefPubMedGoogle Scholar
  37. Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298CrossRefGoogle Scholar
  38. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRefPubMedGoogle Scholar
  39. Tonoli GHD, Teixeira EM, Corrêa AC et al (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88CrossRefPubMedGoogle Scholar
  40. Vanhatalo KM, Dahl OP (2014) Effect of mild acid hydrolysis parameters on properties of microcrystalline cellulose. BioResources 9(3):4729–4740Google Scholar
  41. Wada M, Nishiyama Y, Chanzy H, Forsyth T, Langan P (2008) The structure of celluloses. Powder Diffract 23(2):92–95CrossRefGoogle Scholar
  42. Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69(2):391–397CrossRefGoogle Scholar
  43. Xing M, Yao S, Zhou SK et al (2010) The influence of ultrasonic treatment on the bleaching of cmp revealed by surface and chemical structural analyses. BioResources 5(3):1353–1365Google Scholar
  44. Xu G, Wang L, Liu J, Wu J (2013a) FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Appl Surf Sci 280:799–805CrossRefGoogle Scholar
  45. Xu Q, Gao Y, Qin M, Wu K, Fu Y, Zhao J (2013b) Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. Int J Biol Macromol 60:241–247CrossRefPubMedGoogle Scholar
  46. Zhang Y, Lu XB, Gao C, Lv WJ, Yao JM (2012) Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. J Fiber Bioeng Inf 5(3):263–271CrossRefGoogle Scholar
  47. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Lett 6(10):794–804CrossRefGoogle Scholar
  48. Zimmermann M, Patt R, Kordsachia O (1992) ASAM pulping of Douglas-fir followed by a chlorine-free bleaching sequence. TAPPI J 74(11):129–134Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Tropical Forestry and Forest Products (INTROP)Universiti Putra Malaysia, UPMSerdangMalaysia
  2. 2.Department of Forest Production, Faculty of ForestryUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations