Skip to main content

Bonding of densified beech wood using adhesives based on thermally modified soy proteins

Abstract

The bondability/glueability of aged and sanded thermo-hydro-mechanically (THM) densified beech wood (Fagus sylvatica L.) was tested and compared with undensified sanded beech wood as a control. THM and control specimens were bonded with five different soy protein isolate (SPI) based adhesives. Commercial SPI powder was thermally modified in the vacuum chamber at 50 or 100 °C and pH adjusted (to pH 10.0) dispersions in water prepared at 24, 50 or 90 °C. Wettability was determined with measuring the sessile drop contact angles of water. Effective penetrations (EPs) and tensile shear strengths of THM and control specimens were determined. THM and control wood had similar wettability. Although THM wood had lower moisture content than control wood, it absorbed the water more slowly than control wood. THM specimens showed lower EPs than control specimens when comparing individual adhesives due to increased density of THM wood. Adhesives prepared with SPI thermally modified at 50 °C showed statistically significantly lower tensile shear strength of bonded THM specimens than that of bonded control specimens. THM densification had no significant effect on the bonding strengths of adhesives prepared with non-modified SPI and SPI thermally modified at 100 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Allen AJ, Wescott JM, Varnell DF, Evans MA (2014) Protein adhesive formulations with amine-epichlorohydrin and isocyanate additives. In: US Patent 8845851

  • Amaral-Labat GA, Pizzi A, Gonòalves AR, Celzard A, Rigolet S, Rocha GJM (2008) Environment-friendly soy flour based resins without formaldehyde. J Appl Polym Sci 108:624–632

    CAS  Article  Google Scholar 

  • Anwar UMK, Paridah MT, Hamdan H, Zaidon A, Roziela Hanim A, Nordahlia AS (2012) Adhesion and bonding properties of low molecular weight phenol formaldehyde-treated plybamboo. J Trop For Sci 24:379–386

    Google Scholar 

  • Arruda LM, Del Menezzi CHS (2013) Effect of thermomechanical treatment on physical properties of wood veneers. Int Wood Prod J 4:217–224.

    Article  Google Scholar 

  • Bekhta P, Marutzky R (2007) Reduction of glue consumption in the plywood production by using previously compressed veneer. Holz Roh Werkst 65:87–88.

    Article  Google Scholar 

  • Bekhta P, Niemz P, Sedliacik J (2012) Effect of pre-pressing of veneer on the glueability and properties of veneer-based products. Eur J Wood Prod 70:99–106.

    CAS  Article  Google Scholar 

  • Bekhta P, Proszyk S, Krystofiak T (2014) Colour in short-term thermo-mechanically densified veneer of various wood species. Eur J Wood Prod 72:785–797

    Article  Google Scholar 

  • Bekhta P, Proszyk S, Krystofiak T, Lis B (2015) Surface wettability of short-term thermo-mechanically densified wood veneers. Eur J Wood Prod 415–417

  • Diouf PN, Stevanovic T, Cloutier A, Fang CH, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257:3558–3564

    CAS  Article  Google Scholar 

  • European standard EN 205 (2003) Adhesives—wood adhesives for non-structural applications—determination of tensile shear strength of lap joints. European Committee for Standardization

  • Fang CH, Mariotti N, Cloutier A, Koubaa A, Blanchet P (2012) Densification of wood veneers by compression combined with heat and steam. Eur J Wood Prod 70:155–163.

    CAS  Article  Google Scholar 

  • Frihart CR (2013) Wood adhesion and adhesives. In: Rowell R (ed) Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, Boca Raton, pp 255–278

    Google Scholar 

  • Gardner DJ, Genneralla NC, Gunnells DW, Wolcott MP (1991) Dynamic wettability of wood. Langmuir 7:2498–2502

    CAS  Article  Google Scholar 

  • Gérardin P, Petrič M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stab 92:653–657

    Article  Google Scholar 

  • Gindl M, Sinn G, Reiterer A, Tschegg S (2001) Wood surface energy and time dependence of wettability: a comparison of different wood surfaces using an acid-base approach. Holzforschung 55:433–440

    CAS  Google Scholar 

  • Gindl M, Reiterer A, Sinn G, Stanzl-Tschegg SE (2004) Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz Roh Werkst 62:273–280

    CAS  Article  Google Scholar 

  • Gu K, Huang J, Li K (2013) Preparation and evaluation of particleboard bonded with a soy flour-based adhesive with a new curing agent. J Adhes Sci Technol 27:2053–2064

    CAS  Article  Google Scholar 

  • Gui C, Liu X, Wu D, Zhou T, Wang G, Zhu J (2013) Preparation of a new type of polyamidoamine and its application for soy flour-based adhesives. J Am Oil Chem Soc 90:265–272

    CAS  Article  Google Scholar 

  • Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89:1–5

    CAS  Article  Google Scholar 

  • Huang J, Li K (2008) A new soy flour-based adhesive for making interior type II plywood. JAOCS (J Am Oil Chem Soc) 85:63–70

    CAS  Article  Google Scholar 

  • Image J, version 1.47 (2013) National Institute of Health, USA. http://imagej.nih.gov/ij/download.html

  • Jang Y, Li K (2015) An all—natural adhesive for bonding wood. J Am Oil Chem Soc 92:431–438

    CAS  Article  Google Scholar 

  • Jang Y, Huang J, Li K (2011) A new formaldehyde-free wood adhesive from renewable materials. Int J Adhes Adhes 31:754–759

    CAS  Article  Google Scholar 

  • Jennings JD, Zink-Sharp A, Kamke FA, Frazier CE (2005) Properties of compression densified wood. Part I: Bond performance. J Adhes Sci Technol 19:1249–1261

    CAS  Article  Google Scholar 

  • Jennings JD, Zink-Sharp A, Frazier CE, Kamke FA (2006) Properties of compression-densified wood. Part II: Surface energy. J Adhes Sci Technol 20:335–344

    CAS  Article  Google Scholar 

  • Kamke FA (2006) Densified radiate pine for structural composites. Maderas Cienc Technol 8:83–92

    Google Scholar 

  • Kamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Prod 69:483–487

    Article  Google Scholar 

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. In: US Patent, vol 7, pp 404–422

  • Kamke FA, Nairn JA, Muszynski L, Paris JL, Schwarzkopf M, Xiao X (2014) Methodology for micromechanical analysis of wood adhesive bonds using X-ray computed tomography and numerical modeling. Wood Fiber Sci 46:15–28

    CAS  Google Scholar 

  • Kim JT, Netravali AN (2013) Performance of protein-based wood bioadhesives and development of small-scale test method for characterizing properties of adhesive-bonded wood specimens. J Adhes Sci Technol 27:2083–2093

    CAS  Article  Google Scholar 

  • Kim MJ, Sun XS (2014) Adhesion properties of soy protein crosslinked with organic calcium silicate hydrate hybrids. J Appl Polym Sci 131:8615–8623

    Google Scholar 

  • Kutnar A, Kamke FA, Nairn JA, Sernek M (2008a) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci 40:362–373

    CAS  Google Scholar 

  • Kutnar A, Kamke FA, Petrič M, Sernek M (2008b) The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood. Colloids Surf A Physicochem Eng Asp 329:82–86

    CAS  Article  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2008c) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst 66:439–446

    CAS  Article  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68

    CAS  Article  Google Scholar 

  • Le EA, Nairn JA (2014) Measuring interfacial stiffness of adhesively bonded wood. Wood Sci Technol 48:1109–1121

    CAS  Article  Google Scholar 

  • Li K, Peshkova S, Geng X (2004) Investigation of soy protein-kymene® adhesive systems for wood composites. J Am Oil Chem Soc 81:487–491

    CAS  Article  Google Scholar 

  • Lin Q, Chen N, Bian L, Fan M (2012) Development and mechanism characterization of high performance soy-based bio-adhesives. Int J Adhes Adhes 34:11–16

    Article  Google Scholar 

  • Liu Y, Li K (2002) Chemical modification of soy protein for wood adhesives. Macromol Rapid Commun 23:739–742

    CAS  Article  Google Scholar 

  • Liu Y, Li K (2007) Development and characterization of adhesives from soy protein for bonding wood. Int J Adhes Adhes 27:59–67

    Article  Google Scholar 

  • Liu D, Chen H, Chang PR, Wu Q, Li K, Guan L (2010) Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour Technol 101:6235–6241

    CAS  Article  PubMed  Google Scholar 

  • Liu H, Kamke FA, Guo K (2013) Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer. Eur J Wood Prod 71:173–181

    CAS  Article  Google Scholar 

  • Nordqvist P, Nordgren N, Khabbaz F, Malmström E (2013) Plant proteins as wood adhesives: Bonding performance at the macro- and nanoscale. Ind Crops Prod 44:246–252

    CAS  Article  Google Scholar 

  • Qin Z, Chen H, Gao Q, Zhang S, Li J (2015) Wettability of sanded and aged fast-growing poplar wood surfaces: I. surface free energy. BioResources 10:1008–1023

    Google Scholar 

  • Scheikl M, Dunky M (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52:89–94

    CAS  Article  Google Scholar 

  • Semple KA, Vnučec D, Kutnar A, Kamke FA, Mikuljan M, Smith GD (2015) Bonding of THM modified Moso bamboo (Phyllostachys pubescens Mazel) using modified soybean protein isolate (SPI) based adhesives. Eur J Wood Prod 73:781–792

    CAS  Article  Google Scholar 

  • Šernek M, Kamke FA, Glasser WG (2004) Comparative analysis of inactivated wood surfaces. Holzforschung 58:22–31

    Google Scholar 

  • Shi SQ, Gardner DJ (2001) Dynamic adhesive wettability of wood. Wood Fiber Sci 33:58–68.

    CAS  Google Scholar 

  • Standfest G, Kutnar A, Plank B, Petutschnigg A, Kamke FA, Dunky M (2013) Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Sci Technol 47:121–139

    CAS  Article  Google Scholar 

  • Statgraphics Plus, version 5.0 (2000) Manugistics, Inc., Rockville

  • Tarkow H (1979) Wood and moisture. In: Wangaard FF (ed) Wood: its structure and properties. Pennsylvania State University, University Park, pp 155–185

    Google Scholar 

  • Ugovšek A, Kamke FA, Sernek M, Kutnar A (2013a) Bending performance of 3-layer beech (Fagus sylvativa L.) and Norway spruce (Picea abies (L.) Karst.) VTC composites bonded with phenol–formaldehyde adhesive and liquefied wood. Eur J Wood Prod 71:507–514

    Article  Google Scholar 

  • Ugovšek A, Kamke FA, Sernek M, Pavlič M, Kutnar A (2013b) The wettability and bonding performance of densified VTC beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) bonded with phenol–formaldehyde adhesive and liquefied wood. Eur J Wood Prod 71:371–379

    Article  Google Scholar 

  • United Soybean Board (2012) Tehnical data review. Soy-based wood adhesives. http://soynewuses.org/wp-content/uploads/44422_TDR_Adhesives.pdf. Accessed 20 November 2015

  • Vnučec D, Goršek A, Kutnar A, Mikuljan M (2015) Thermal modification of soy proteins in the vacuum chamber and wood adhesion. Wood Sci Technol 49:225–239

    Article  Google Scholar 

  • Wang W, Yan N (2005) Characterizing liquid resin penetration in wood using a mercury intrusion porosimeter. Wood Fiber Sci 37:505–513

    CAS  Google Scholar 

  • Wescott JM, Birkeland MJ (2008) Stable adhesives from urea-denatured soy flour. In: US Patent 20080021187

  • Wescott JM, Birkeland MJ (2012) Low pH soy flour-non urea diluent and methods of making same. In: US Patent 20120214909

  • Wescott JM, Birkeland MJ (2013) Stable acid denatured soy/urea adhesives and methods of making same. In: US Patent 8465581

  • Wescott JM, Frihart CR (2008) Water-resistant vegetable protein adhesive dispersion compositions. In: US Patent 7345136

  • Zhang Y, Zhu W, Lu Y, Gao Z, Gu J (2014) Nano-scale blocking mechanism of MMT and its effects on the properties of polyisocyanate-modified soybean protein adhesive. Ind Crops Prod 57:35–42

    CAS  Article  Google Scholar 

  • Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci 131:40451

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Prof. Franc Pohleven for enabling the use of the vacuum chamber at University of Ljubljana, Biotechnical Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doroteja Vnučec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vnučec, D., Žigon, J., Mikuljan, M. et al. Bonding of densified beech wood using adhesives based on thermally modified soy proteins. Eur. J. Wood Prod. 75, 767–776 (2017). https://doi.org/10.1007/s00107-017-1164-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-017-1164-0

Keywords

  • Control Specimen
  • Tensile Shear Strength
  • Viscoelastic Thermal Compression
  • Prepared Adhesive
  • Adhesive Penetration