Skip to main content
Log in

Bonding of THM modified Moso bamboo (Phyllostachys pubescens Mazel) using modified soybean protein isolate (SPI) based adhesives

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The bondability/gluability of THM modified Moso bamboo specimens was tested and compared with unmodified Moso specimens as a reference. Five different SPI based adhesives were used for bonding. The SPI powder was thermally modified in a vacuum chamber at 50 or 100 °C and dispersions prepared at 24, 50, or 90 °C. Bond shear strengths of the adhesives were determined by lap-shear tests. Surface characteristics (roughness indices, Ra and Rz; and sessile droplet contact angle, CA) of compressed and uncompressed bamboo were measured. Bond shear strengths were mostly lower for THM-compressed bamboo tissue than uncompressed tissue. In the uncompressed controls there were no significant differences between adhesives. However in THM-compressed specimens, one formulation (50 °C modification temperature and 24 °C dispersion preparation temperature) had significantly higher bond shear strength. THM surfaces were characterised by high surface smoothness, likely little or no adhesive penetration into the surface due to observed void closure, and loss of adhesive from the bondline during pressing, all of which were believed to contribute to the significantly lower bond shear strength compared with control veneers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson WG (1986) Wettability literature survey II: wettability measurement. J Pet Technol 38:1246–1262

    CAS  Google Scholar 

  • Anwar UM, Paridah M, Hamdan H, Abd Latif M, Zaidon A (2005) Adhesion and bonding properties of plybamboo manufactured from Gigantochloa scortechinii. Am J Appl Sci (Special Issue): 53–58

  • Anwar UM, Paridah MT, Hamdan H, Zaidon A, Roziela Z, Hanim A, Nordahlia AS (2012) Adhesion and bonding properties of low molecular weight phenol formaldehyde-treated plybamboo. J Trop For Sci 24(3):379–386

    Google Scholar 

  • Archila-Santos HF, Ansell MP, Walker P (2014a) Elastic properties of thermo-hydro-mechanically modified bamboo (Guadua angustifolia Kunth) measured in tension. Key Eng Mat 600:111–120

    Article  Google Scholar 

  • Archila-Santos HF, Brandon D, Ansell MP, Walker P, Ormondroyd GA (2014b) Evaluation of the mechanical properties of cross laminated bamboo panels by digital image correlation and finite element modelling. In: Proceedings of 11th World Congr Timber Eng/68th Int For Prod Soc Conv, Quebec City, 10–14 August 2014, p 8

  • ASTM International (2015) Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM D445-14. American Society for Testing and Materials, West Conshohoken, p 15

    Google Scholar 

  • Brinkmann S, Bodschwinna H, Lemke HW (2000) Accessing roughness in three-dimensions using Gaussian regression filter. In: Proceedings of 8th International Conference on Metrology and Properties of Engineering Surfaces, 26–29 April 2000, Huddersfield, UK

  • Cheng E, Sun X (2006) Effects of wood surface roughness, adhesive viscosity and processing pressure on adhesion strength of protein adhesive. J Adhes Sci Technol 20(9):997–1017

    Article  CAS  Google Scholar 

  • Ciannamea EM, Stefani PM, Ruseckaite RA (2010) Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour Technol 101:818–825

    Article  CAS  PubMed  Google Scholar 

  • Ciannamea EM, Martucci JF, Stefani PM, Ruseckaite RA (2012) Bonding quality of chemically-modified soybean protein concentrate-based adhesives in particleboards from rice husks. J Am Oil Chem Soc 89:1733–1741

    Article  CAS  Google Scholar 

  • Collett BM (1972) A review of surface and interfacial adhesion in wood science and related fields. Wood Sci Technol 6(1):1–42

    Article  CAS  Google Scholar 

  • De Maura LF, Hernandez RE (2005) Evaluation of varnish coating performance for two surfacing methods on sugar maple wood. Wood Fiber Sci 37(2):355–366

    Google Scholar 

  • De Maura LF, Cool J, Hernandez RE (2010) Anatomical evaluation of wood surfaces produced by oblique cutting and face milling. IAWA J 31(1):77–88

    Article  Google Scholar 

  • De Vos V (2010) Bamboo For Exterior Joinery: A research in material properties and market perspectives, BSc Thesis, University of Applied Sciences Van Hall Larenstein (Wageningen UR), p 82

  • Diouf PN, Stevanovic T, Cloutier A, Fang CH, Blanchet P, Kouba A, Marriotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar veneers. Appl Surf Sci 257:3558–3564

    Article  CAS  Google Scholar 

  • Dussan VEB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  • Frihart C (2009) Adhesive groups and how they relate to the durability of bonded wood. J Adhes Sci Technol 23(4):601–617

    Article  Google Scholar 

  • Fujii Y, Yoshizane M, Okumura S (1997) Evaluation of surface roughness by various parameters I. Relationships between several roughness parameters and tactile roughness (in Japanese). Mokuzai Gakkaishi 43:574–579

    CAS  Google Scholar 

  • Fujiwara Y, Fujii Y, Sawada Y, Okumura S (2004) Assessment of wood surface roughness: comparison of tactile roughness and three-dimensional parameters derived using a robust Gaussian regression filter. J Wood Sci 50(1):35–40

    Article  Google Scholar 

  • Gerardin P, Petric M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stab 92(4):653–657

    Article  CAS  Google Scholar 

  • Gindl W, Gupta HS (2002) Cell-wall hardness and young’s modulus of melamine-modified spruce wood by nano-indentation. Compos A 33(8):1141–1145

    Article  Google Scholar 

  • Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6(12):1269–1302

    Article  CAS  Google Scholar 

  • Hakkou M, Petrissans M, Zoulalian A, Gerardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89:1–5

    Article  CAS  Google Scholar 

  • Hanim AR, Zaidon A, Abood F, Anwar UM (2010) Adhesion and bonding characteristics of preservative-treated bamboo (Gigantochloa scortechinii) laminates. J Appl Sci 10:1435–1441

    Article  Google Scholar 

  • Hettiarachchy NS, Kalapathy U, Myers DJ (1995) Alkali-modified soy protein with improved adhesive and hydrophobic properties. J Am Oil Chem Soc 72(1):1461–1464

    Article  CAS  Google Scholar 

  • Hinterwaldner R (1997) Plant proteins as resources for innovation in backbone binders. Coating 30:323–325

    CAS  Google Scholar 

  • Huang W, Sun X (2000) Adhesive properties of soy proteins modified by urea and guanidine hydrochloride. J Am Oil Chem Soc 77(1):101–104

    Article  CAS  Google Scholar 

  • Hunt CE, Janes JE, Grigsby W (2010) Evaluation of adhesive penetration of wood fibre by nanoindentation and microscopy. In: Proceedings of 10th Pacific Rim Bio-Based Compos Symposium, Oct 5–8, 2010, Banff, AB, pp 216–226

  • ISO 16610 (2011) Geometrical product specifications (GPS)—Filtration—Part 21: Linear profile filters: Gaussian filters, ISO 16610 part 21, International Organization for Standardization, Geneva

  • ISO 4287 (2000) Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions, and Surface Texture Parameters, International Organization for Standardization, Geneva

  • Jennings JE, Zink-Sharp A, Kamke FA, Frazier CE (2005) Properties of compression densified wood. Part 1: bond performance. J Adhes Sci Technol 19(13–14):1249–1261

    Article  CAS  Google Scholar 

  • Jennings JD, Zink-Sharp A, Frazier CE, Kamke FA (2006) Properties of compression-densified wood II: surface energy. J Adhes Sci Technol 20(4):335–344

    Article  CAS  Google Scholar 

  • Kalapathy U, Hettiarachchy NS, Myers D, Hanna MA (1995) Modification of soy proteins and their adhesive properties on woods. J Am Oil Chem Soc 72(5):507–510

    Article  CAS  Google Scholar 

  • Kamke FA, Lee JN (2007) Adhesive penetration in wood—a review. Wood Fiber Sci 39(2):205–230

    CAS  Google Scholar 

  • Kamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Prod 69(3):483–487

    Article  Google Scholar 

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. US Pat. 7404422, p 14

  • Konnerth J, Jaeger A, Eberhardsteiner J, Mueller U, Gindl W (2006) Elastic properties of adhesive polymers. I. Polymer films and bond lines by means of nanoindentation. J Appl Polym Sci 102(2):1234–1239

    Article  CAS  Google Scholar 

  • Konnerth J, Harper D, Lee SH, Rials TG, Gindl W (2008) Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (STHM). Holzforsch 62(1):91–98

    Article  CAS  Google Scholar 

  • Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crops Prod 16:155–172

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2008a) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst 66(6):439–446

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Petric M, Sernek M (2008b) The influence of viscoelastic thermal compression on the chemistry and surface energies of wood. Coll Surf A 329:82–86

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Nairn JA, Sernek M (2008c) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci 40(3):362–373

    CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Utilization of plantation wood in high performance structural wood-based composites. In: International Conference Wood Adhesion, Sept 28–30, 2009, South Lake Tahoe, CA, p 22

  • Lambuth AL (1994) Protein adhesives for wood. In: Pizzi A, Mittal KL (eds) Advanced wood adhesive technology. Marcel Dekker Inc, New York, pp 259–281

    Google Scholar 

  • Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. MSc Thesis, School of Renewable Natural Resources, Louisiana State University, p 68

  • Liptakova E, Kudela J (1994) Analysis of the wood wetting process. Holzforsch 48(2):139–144

    Article  CAS  Google Scholar 

  • Liptakova E, Kudela J, Bastl Z, Spirovova I (1995) Influence of mechanical surface treatment of wood on the wetting process. Holzforsch 49(4):369–375

    Article  CAS  Google Scholar 

  • Liu Y, Li K (2007) Development and characterization of adhesives from soy protein for bonding wood. Int J Adhes Adhes 27(1):59–67

    Article  Google Scholar 

  • Liu J, Zhang H, Chrusciel L, Na B, Lu X (2013) Study on a bamboo stressed flattening process. Eur J Wood Prod 71(3):291–296

    Article  Google Scholar 

  • Mackay CD (1998) Good adhesive bonding starts with surface preparation. Adhes Age 41:30–32

    CAS  Google Scholar 

  • Marra AA (1992) Technology of wood bonding. Van Nostrand Reinhold, New York, p 454

    Google Scholar 

  • Mo X, Sun X, Wang D (2004) Thermal properties and adhesion strength of modified soybean storage proteins. J Am Oil Chem Soc 81:395–400

    Article  CAS  Google Scholar 

  • Navi P, Girardet F (2000) Effect of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforsch 54(3):287–293

    Article  CAS  Google Scholar 

  • Navi P, Heger F (2004) Combined densification and thermo-hygro-mechanical processing of wood. MRS Bull 29:332–336

    Article  Google Scholar 

  • Nordqvist P, Nordgren N, Khabbaz F, Malmström E (2013) Plant proteins as wood adhesives: bonding performance at the macro- and nano-scale. Ind Crop Prod 44:246–252

    Article  CAS  Google Scholar 

  • Packham DE (2003) The mechanical theory of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker, New York, pp 69–93

    Google Scholar 

  • Petrie EM (2006) Handbook of adhesives and sealants, 2nd edn. McGraw-Hill, New York, p 880

    Google Scholar 

  • Petrissans M, Gerardin P, Elbakali D, Serraj M (2003) Wettability of heat treated wood. Holzforsch 57(3):301–307

    CAS  Google Scholar 

  • SAS Institute, Inc. (2012) Using JMP Version 10, SAS (Statistical Analysis Systems) Institute Inc., Cary, NC, p 462

  • Semple KE, Kamke FA, Kutnar A, Smith GD 2013 ‘Exploratory thermal-hydro-mechanical modification (THM) of Moso bamboo (Phyllostachys pubescens Mazel).’ In: Medved S, Kutnar A (eds) Characterisation of Modified Wood in Relation to Wood Bonding and Coating Performance. Proceedings of Joint COST Conf FP0904 and FP1006, 16–18 Oct 2013, Rogla, Slovenia, University of Ljubljana Biotechnical Faculty, Ljubljana, pp 220–227

  • Sernek M, Resnik J, Kamke FA (1999) Penetration of liquid urea-formaldehyde adhesive into beech wood. Wood Fiber Sci 31(4):41–48

    CAS  Google Scholar 

  • Smith A (1971) Resin penetration in wood cell walls-implications for adhesion of polymers to wood. PhD Thesis, Syracuse University New York (SUNY), Syracuse, NY, p 175

  • Stehr M, Gardner DJ, Walinder MEP (2001) Dynamic wettability of different machined wood surfaces. J Adhes 76:185–200

    Article  CAS  Google Scholar 

  • Stockel F, Konnerth J, Kantner W, Moser J, Gindl W (2010) Tensile shear strength of UF-and MUF-bonded veneer related to data of adhesives and cell walls measured by nanoindentation. Holzforsch 64(3):337–342

    Article  Google Scholar 

  • Takagi H, Mizobuchi A, Kusano K, Okitsu Y (2008) Flexural properties of all bamboo ‘green’ composites. In: Brebbia CA (ed) WIT transactions on the built environment, vol 97., High performance structures and materials IVWessex Inst Technol, South Hampton, pp 167–173

    Google Scholar 

  • Tanaka K, Inoue M, Fujihara H, Adachi H, Goto H (2006) Development of bamboo connector strengthened by densified technique. In: Proceedings of 9th World Conference on Timber Engineering, August 6–10, 2006, Portland, OR

  • Ugovšek A, Kamke FA, Sernek M, Pavlič M, A Kutnar (2013) The wettability and bonding performance of densified VTC beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.), bonded with phenol-formaldehyde adhesive and liquefied wood. Eur. J. Wood Prod 71(3):371–379

  • Vnučec D, Goršec A, Kutnar A, Mikuljan M (2015) Thermal modification of soy proteins in the vacuum chamber and wood adhesion. Wood Sci Technol 49(2):225–239

    Article  Google Scholar 

  • Weissensteiner J, Teischinger A, Kamke FA (2012) Examination of operational parameters for VTC wood production. Holztechnol 53(2):5–11

    Google Scholar 

  • Xian D, Semple KE, Hagdan S, Smith GD (2013) Properties and wood bonding capacity of nanoclay-modified urea and melamine formaldehyde resins. Wood Fiber Sci 45(4):383–389

    CAS  Google Scholar 

  • Yao W, Li Z (2003) Flexural behaviour of bamboo—fiber-reinforced mortar laminates. Cem Concr Res 33(1):15–19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semple, K.E., Vnučec, D., Kutnar, A. et al. Bonding of THM modified Moso bamboo (Phyllostachys pubescens Mazel) using modified soybean protein isolate (SPI) based adhesives. Eur. J. Wood Prod. 73, 781–792 (2015). https://doi.org/10.1007/s00107-015-0938-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-015-0938-5

Keywords

Navigation