European Journal of Wood and Wood Products

, Volume 71, Issue 6, pp 717–723 | Cite as

Particleboards production from date palm biomass

  • Siham Amirou
  • Abdelatif Zerizer
  • Antonio Pizzi
  • Imane Haddadou
  • Xiaojian Zhou
Originals Originalarbeiten

Abstract

Date palm biomass is a renewable natural resource that has not widely been utilized in industry. The objective of this study was to examine some chemical properties of date palm trunk and rachis (holocellulose, cellulose, lignin and extractives) and to evaluate their suitability to produce composite panels. Particleboards were produced using trunk and rachis as an alternative raw material for forest products industry in the presence of two types of polycondensation resins (phenol–formaldehyde and melamine urea–formaldehyde) which were selected as binding agents. The panels were tested for their physical (water absorption and thickness swelling) and mechanical (modulus of rupture, modulus of elasticity and internal bond strength) properties. The internal bond strength of date palm trunk and date palm rachis based boards met the requirements of the general purpose product standards (EN 312) at 0.70 g/cm3 density. The panels made with phenol–formaldehyde resin showed better performance with respect to the panels made with melamine urea–formaldehyde. In addition, the particleboard made with date palm trunk particles had better quality compared to the particleboard made from date palm rachis particles. Based on preliminary results of this work, raw materials from date palm trunks and rachis can have a promising potential in the manufacture of particleboards and as a substitute for wood in board production.

Herstellung von Spanplatten aus Dattelpalmenbiomasse

Zusammenfassung

Die Biomasse der Dattelpalme ist ein natürlicher nachwachsender Rohstoff, dessen industrielle Nutzung noch nicht weit verbreitet ist. Ziel dieser Studie ist es, einige chemische Eigenschaften (Holocellulose, Cellulose, Lignin und Extraktstoffe) des Stamms und der Rhachis der Dattelpalme zu untersuchen und deren Eignung für die Herstellung von Verbundplatten zu beurteilen. Spanplatten wurden unter Verwendung von Stamm und Rhachis als alternativen Rohstoff für die Holzindustrie und zwei verschiedenen Polykondensationsharzen (Phenolformaldehyd und Melamin-Harnstoff-Formaldehyd) als Bindemittel hergestellt. Die physikalischen (Wasseraufnahme und Dickenquellung) sowie die mechanischen (Biegefestigkeit, Elastizitätsmodul und Querzugfestigkeit) Eigenschaften der Platten wurden geprüft. Die Querzugfestigkeit von Platten aus Spänen des Dattelpalmenstamms und der–rhachis mit einer Dichte von 0.70 g/cm³erfüllten die Anforderungen an Platten für allgemeine Zwecke gemäß EN 312. Die mit Phenolformaldehyd hergestellten Platten wiesen bessere Eigenschaften auf als die mit Melamin-Harnstoff-Formaldehydharz hergestellten Platten. Die mit Spänen aus dem Stamm der Dattelpalme hergestellten Platten erwiesen sich als besser als die mit Spänen aus der Rhachis hergestellten Platten. Basierend auf diesen vorläufigen Ergebnissen lässt sich sagen, dass Rohstoffe aus dem Stamm und der Rhachis von Dattelpalmenholz ein vielversprechendes Ersatzmaterial für die Plattenherstellung sein könnte.

References

  1. Abdouche F (2010) Communication from the botanic unit development at the ministry of agriculture and rural development—Algeria. Algerian Press Service, APS, AlgiersGoogle Scholar
  2. Alma MH, Kalaycıoğlu H, Bektas I, Tutus A (2005) Properties of cotton carpel-based particleboards. Ind Crops Prod 22(8):141–149CrossRefGoogle Scholar
  3. Ashori A, Nourbakhsh A (2008) Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Ind Crops Prod 28:225–230CrossRefGoogle Scholar
  4. El Morsy MMS (1980) Studies on the rachis of Egyptian date palm leaves for hardboard production. Fibre Sci Technol 13(4):317–321CrossRefGoogle Scholar
  5. EN 310 (1993) Wood based panels—determination of modulus of elasticity in bending strength. CEN—European Committee for StandardizationGoogle Scholar
  6. EN 317 (1993) Particleboards—determination of swelling in thickness after immersing in water. CEN—European Committee for StandardizationGoogle Scholar
  7. EN 319 (1993) Particleboards—determination of tensile strength perpendicular to the plane of the board. CEN—European Committee for StandardizationGoogle Scholar
  8. EN 312 (2005) Particleboards-specifications. European Committee for Standardization, Brussels (Belgium)Google Scholar
  9. Guler C, Ozen R (2004) Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Roh Werkst 62:40–43CrossRefGoogle Scholar
  10. Hegazy SS, Aref IM (2010) Suitability of some fast-growing trees and date palm fronds for particleboard production. For Prod J 60(7/8):599–604Google Scholar
  11. Iskanderani FI (2008) Physical properties of particleboard panels manufactured from phoenix dactylifera-L (date palm) mid-rib chips using ureaformaldehyde binder. Int J Polym Mater 57(10):979–995CrossRefGoogle Scholar
  12. Kalaycıoğlu H (1992) Utilization of annual plant residues in production of particleboard. ORENKO-92. First national forest product congress, Trabzon, Turkey, pp 288–292Google Scholar
  13. Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fibre sources. Bioresource Technol 101:775–780CrossRefGoogle Scholar
  14. Khristova P, Kordsachia O, Khider T (2005) Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresource Techno 96:79–85CrossRefGoogle Scholar
  15. Messar EM (1996) The Algerian date sector: situation and prospects on the horizon 2010. Options méditerranéennes 28:23–44Google Scholar
  16. Mohamad Ibrahim MN, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohyd Polym 86:112–119CrossRefGoogle Scholar
  17. Mohamed Ahmed MVO, Bouna ZEO, Mohamed Lemine FM, Djeha TKO, Trifi M, Mohamed Salem AO (2011) Use of multivariate analysis to assess phenotypic diversity of date palm (Phoenix dactylifera L.) cultivars. Sci Hort-Amst 127:367–371CrossRefGoogle Scholar
  18. Nasser RA, Al-Mefarrej HA (2011) Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. J Appl Sci Res 15(12):1651–1658Google Scholar
  19. Nemli G, Demirel S, Gumuokaya E, Aslan M, Acar C (2009) Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manag 29:1129–1131PubMedCrossRefGoogle Scholar
  20. Nourbakhsh A, Farhani Baghlani F, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Ind Crops Prod 33:183–187CrossRefGoogle Scholar
  21. Raj BR (2010) Date palm cultivation in the changing scenario of Indian arid zones: challenges and prospects. In: Desert plants: biology and biotechnology, vol 4, pp 423–459. doi:10.1007/978-3-642-02550-1_20
  22. Stone JE, Scallan AM (1965) The effect of component removal upon the porous structure of the cell wall of wood. J Polym Sci Pol Sym 11:13–25CrossRefGoogle Scholar
  23. TAPPI T 204 cm-97 (1997) Solvent extractives of wood and pulpGoogle Scholar
  24. TAPPI 222 om-02 (2002) Acid insoluble lignin in wood and pulpGoogle Scholar
  25. TAPPI T 257 cm-02 (2002) Sampling and preparing wood for analysisGoogle Scholar
  26. Wise LE, Murphy M (1946) A Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J 122:35–43Google Scholar
  27. Ziegler GA (1974) Water vapor sorption by softwood cell wall constituents. PhD thesis, The Pennsylvania State University, Agricultural, Forestry and WildlifeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Siham Amirou
    • 1
  • Abdelatif Zerizer
    • 1
  • Antonio Pizzi
    • 2
  • Imane Haddadou
    • 1
  • Xiaojian Zhou
    • 2
  1. 1.UR-MPE, FSI, UMBBBoumerdesAlgeria
  2. 2.LERMAB, ENSTIBUniversity of LorraineEpinalFrance

Personalised recommendations